Comparison of Parametric Linear Model Identification Techniques for Prediction in Type 1 Diabetes

S. Faccioli, MSc¹, S. Del Favero, PhD¹

¹Department of Information Engineering - DEI, University of Padova, Italy

1. INTRODUCTION

- Both manual and automatic **Blood Glucose (BG)** • control would greatly benefit of accurate BG predictions
- Key challenge in BG prediction: intra- & inter-subject variability
- To tackle this challenge: • identification of individualized model for patientspecific prediction, employing carbohydrate, insulin information and past BG values
- Experimental evidences suggest that a linear • approximation can capture the essential dynamics of the nonlinear glucose-insulin system
- Dynamic systems could be approximated by • parametrized data-driven models describing the relation between input and output. These models could thus have two different degrees of freedom: the model parametrization, and the model complexity, related to the number of parameters estimated e.g. by different order selection criteria

2. AIM

 \succ To explore the impact on prediction performance of the two degrees of freedom: model

3. DESIGN & METHODS

- 14 days of simulated data were generated for 100 virtual subjects using the UVA/Padova T1D Simulator
 - 7 days for training
 - 7 days for test
- Identification of individualized linear predictors based on black-box models^[1], by using:
 - Prediction Error Method (PEM) for the estimation of model parameters
 - Different parametrizations:
 - AutoRegressive with eXougenous inputs (ARX)
 - AutoRegressive Moving-Average with eXogenous inputs (ARMAX)
 - Box-Jenkins (BJ)
 - Different order selection criteria:
 - Parsimony criteria, i.e. Akaike Information Criterion (AIC) and Bayesian Information Criterion (**BIC**)
 - Cross-validation (CV)
- Prediction performance
 - For multiple Prediction Horizons (PH)
 - Assessed with Coefficient Of Determination (COD)

Comparison of results with ANOVA

4. RESULTS

5-min prediction: very similar

performance, average COD ~ 99.3%. p-value among model classes and order selection criteria equal to, respectively, 0.5 and 0.3

Higher prediction horizon: deterioration in the prediction's accuracy, but still similar performance (see Table 1)

3-hr COD (%)	CV	AIC	BIC	ANOVA
ARX	41.30	39.20	30.00	
ARMAX	43.30	41.10	38.50	p-value = 0.20
BJ	40.30	43.80	39.90	
ANOVA	p-value = 0.10			

Table 1: Median values of the 3-hr COD for different combination of model parametrization and automatic technique for individual order selection, with the respective p-values

5. CONCLUSIONS

> No significant difference neither between model classes, nor between order selection criteria, suggesting that these degrees of freedom have little impact on the final performance

CONTACT:

S. Faccioli: simone.faccioli@dei.unipd.it

REFERENCE:

[1] L. Ljung: "System Identification - Theory For the User". PTR Prentice Hall, Upper Saddle River, N.J., 1999

