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Abstract

Energy metabolism heterogeneity is a hallmark in ovarian cancer; namely, the 
Warburg and reverse Warburg effects coexist in ovarian cancer. Exploration of 
energy metabolism heterogeneity benefits the discovery of the effective biomarkers 
for ovarian cancers. The integrative analysis of transcriptomics (20,115 genes in 419 
ovarian cancer samples), proteomics (205 differentially expressed proteins), and 
mitochondrial proteomics (1198 mitochondrial differentially expressed proteins) 
revealed (i) the upregulations of rate-limiting enzymes PKM2 in glycolysis, IDH2 in 
Krebs cycle, and UQCRH in oxidative phosphorylation (OXPHOS) pathways, (ii) 
the upregulation of PDHB that converts pyruvate from glycolysis into acetyl-CoA 
in Krebs cycle, and (iii) that miRNA (hsa-miR-186-5p) and RNA-binding protein 
(EIF4AIII) had target sites in those key proteins in energy metabolism pathways. 
Furthermore, lncRNA SNHG3 interacted with miRNA (hsa-miR-186-5p) and 
RNA-binding protein (EIF4AIII). Those results were confirmed in the ovarian 
cancer cell model and tissues. It clearly concluded that lncRNA SNHG3 regulates 
energy metabolism through miRNA (hsa-miR-186-5p) and RNA-binding protein 
(EIF4AIII) to regulate the key proteins in the energy metabolism pathways. SNHG3 
inhibitor might interfere with the energy metabolism to treat ovarian cancers. These 
findings provide more accurate understanding of molecular mechanisms of ovarian 
cancers and discovery of effective energy-metabolism-heterogeneity therapeutic 
drug for ovarian cancers.

Highlights

• Mitochondrial proteomics revealed the energy metabolism heterogeneity in 
ovarian cancers.

• LncRNA SNHG3 was related to ovarian cancer survival and energy metabolism 
with ovarian cancer TCGA analysis.

• SNHG3 was related to energy metabolism by regulating miRNAs and EIF4AIII 
based on GSEA and Starbase analyses.

• MiRNAs and EIF4AIII regulate the glycolysis, Krebs cycle, and OXPHOS path-
ways by targeting PKM, PDHB, IDH2, and UQCRH.

Keywords: ovarian cancer, iTRAQ, mitochondrial proteomics, TCGA,  
energy metabolism, SNHG3
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1. Introduction

Ovarian cancer is a common gynecologic cancer with high mortality [1]. Despite 
chemotherapy, radiotherapy, surgery, and target therapy has previously been 
developed in ovarian cancers [2], the 5-year overall survival rate for patients who 
diagnosed with late stage III−IV disease is still very poor (about 30%). Because of 
the site of the ovaries and the certain clinical characteristics of epithelial cancers, 
it is a challenge to make early diagnosis [3]. Women with high-risk factors (e.g., 
family history, or BRCA mutations) plan for a follow-up visit with cancer antigen 
125 (CA-125) monitoring and ultrasound, however, prospective validation of 
these physical examination or lab tests remain elusive [4]. The changes of energy 
metabolism are common in cancer cells, which might be potential biomarkers and 
therapeutics targets [5]. During the last decade, a great attention has been paid to 
metabolic reprogramming of cancer. However, cancer basic studies fail to reach a 
consistent conclusion on mitochondrial function in cancer energy metabolism [6]. 
The traditional view of Warburg was that cancer cells undergo aerobic glycolysis, 
which refers to the fermentation of glucose to lactate in the presence of oxygen as 
opposed to the complete oxidation of glucose, thus brought attention to the role 
of mitochondria in tumorigenesis [7]. A previous study found that the glycolysis 
enzyme PKM2 is important for cancer metabolism and tumor growth, which can 
improve activity and expression of PKM2 [8]. On the contrary, mitochondria 
were observed dysfunction, including the decreased effectiveness of Krebs cycle 
and electron transfer chain (ETC) complexes decoupling [9]. However, a novel 
‘reverse Warburg effect’, was put forward in 2009 and impacted previous percep-
tions on cancer metabolism [10]. In this model of reverse Warburg chain, cancer 
cells and the cancer-associated fibroblasts (CAFs) become metabolically coupled. 
Interactions between cancer cells and tumor-microenvironment (TME) highly 
affect proliferation, energy metabolism, metastasis, and relapse of carcinoma [11]. 
Cancer cells secrete a large amount of ROS into microenvironment to enhance 
oxidative stress in CAFs. If the inflammatory reaction, autophagy, loss of stromal 
caveolin-1 (Cav-1), and nitric oxide synthase (NOS) are increased in CAFs, there is 
a good chance for progression of aerobic glycolysis [12]. Consequently, CAFs secrete 
plenty of energy-rich fuels to TME, including ketone bodies, lactate, pyruvate, and 
fatty acids. In turn, the nourishment ‘feed’ mitochondrial oxidative phosphoryla-
tion and ATP supplements [13]. In this process, mono-carboxylate transporters 
(MCTs) were highly expressed in both cancer cells and CAFs to be involved in some 
regulations. Immunochemistry result demonstrates that MCT4 was distributed 
specifically in CAFs in human breast cancers, which implicated in lactate efflux 
progress; while MCT1 participated in lactate uptake, and significantly upregulated 
specifically in kinds of cancer cells [14]. Thus evidence indicates limitations of ‘the 
Warburg effect’. However, some studies demonstrated that aerobic glycolysis was 
not the dominant energy metabolism approach for many human cancer cell lines. In 
the past decades, studies on Warburg and reverse Warburg effects in cancers have 
formed a new frontier regarding additional roles of mitochondria in a cancer, and 
multiple functions of mitochondria have been identified in tumorigenesis [15].

High-throughput proteomics approach provides a scientific evaluation of 
protein expression. Functional proteomics offers more subtle clues, due to a greater 
attention paid to subcellular proteome research [16]. However, the subcellular 
proteomics of ovarian cancer mitochondrial proteins has not been elucidated. 
Mitochondria are the center of energy metabolism in eukaryotic cells, and also 
involved in other functions, such as cell signaling, cellular differentiation, cell 
death, and maintaining control of the cell cycle and oxidative stress regulation 
[17]. Those mitochondria-mediated biological processes are so closely associated 
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with tumor relapse or metastasis. Thus, cancer therapeutics should urgently find a 
way to explore molecular mechanisms of mitochondrion during tumorigenesis and 
tumor progression [18]. Inside the cancer cell appeared structural and morphologi-
cal alterations of the mitochondria, and variations of morphology and performance 
are presumably associated with mitochondrial differentially expressed proteins 
(mtDEPs) [19]. A slight increase in research on ovarian cancer has occurred in 
recent years, quantitative proteomic analysis of mitochondria from human ovarian 
cancer cells and their paclitaxel-resistant sublines proved that the chemoresistance 
mechanisms were partly related to the mitochondria [20]. Mitochondria similarly 
impart considerable flexibility for tumor cell growth and survival in otherwise 
harsh environments such as during nutrient depletion, hypoxia and cancer treat-
ments, and are therefore key players in tumorigenesis [15]. The subcellular pro-
teomics of ovarian cancer mitochondrial proteins may offer new insights into aspect 
of tumor development.

Regeneration of energy metabolism plays crucial roles in the pathogenesis and 
development of cancer since it accelerates cancer cell growth, cell cycle, prolifera-
tion and metastasis [21]. The impact of non-coding RNAs (ncRNAs) has profoundly 
touched the fields of human cancers, cell biology, functional genomics, and drug 
therapy. Long non-coding RNAs (lncRNAs) (>200 nucleotides) and microRNAs 
(20–24 nucleotides) have attracted much attention, which acted as key regulators in 
the cellular biological processes, gene expression, gene regulation, basic biological 
functions of eukaryotic genomes, and post-transcriptional regulation of mRNA 
[22]. Recent studies demonstrated that lncRNAs were widely used as biomarkers 
for the diagnosis and prognosis of malignant tumors [23], and some lncRNAs can 
even act as the new therapeutic targets [24]. More and more researchers have turned 
attention to the mechanism between non-coding RNAs and malignant tumors. 
LncRNAs affects on energy metabolism-related signaling pathways induced epi-
genetic regulation [25]. MicroRNAs can silence gene expression by binding to 3′ 
untranslated region (3’UTR) sequences in their target messenger RNAs (mRNAs), 
resulting in the inhibition of translation or mRNA degradation, but the interac-
tion of lncRNAs with microRNAs can hamper this effect [26]. The present results 
revealed that lncRNA FOXD2-AS1 acted as a tumor promoters partly through EphB3 
inhibition by directly interacting with lysine (K)-specific demethylase 1A (LSD1) 
and zeste homolog 2 (EZH2), which indicates that lncRNA-target gene- 
carcinogenesis axis for cancers does exist [27]. Here, it emphasizes important sci-
entific associations of lncRNAs with energy metabolism in cancer cells. Increasing 
evidence indicates that lncRNAs play significant roles in cancer metabolism, and 
explore the potential mechanisms that could help elucidate regulation axis or net-
work and provide a new direction for clinical management of different malignant 
phenotypes [28]. In our previous research, iTRAQ-based quantitative proteomics 
identified 1198 mitochondrial differentially expressed proteins (mtDEPs) between 
mitochondria samples isolated from human ovarian cancer and control tissues [29] 
and 205 differentially expressed proteins (DEPs) between human ovarian cancers and 
controls tissues [39]. The TCGA database includes 20,115 genes in 419 ovarian cancer 
samples. The conjoint analysis of 1198 mtDEPs, 205 DEPs, and 20,115 TCGA data in 
ovarian cancers investigated the biological pathways and molecular mechanisms of 
SNHG3-downstream genes-energy metabolism axis. LncRNA SNHG3 was associated 
with survival for ovarian cancers, and further gene set enrichment analysis proved 
the roles of SNHG3 in the energy metabolism through miRNAs and RNA binding 
protein EIF4AIII to target genes, including PKM, PDHB, IDH2, and UQCRH [29].

Figure 1 showed the experimental flow-chart of integrative analysis of 1198 
mtDEPs [29], 205 DEPs [39], and 20,115 TCGA data in ovarian cancers [29] to 
reveal energy heterogeneity and its molecular mechanisms.
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2. Methods

2.1 Ovarian cancer mitochondrial DEP data and bioinformatic analysis

Mitochondria were separated from 7 ovarian cancer tissues (high-degrade, poorly 
or moderately differentiated carcinoma cells) (cancer group) and 11 control ovaries 
with benign gynecologic diseases (fibroids, adenomyosis, ovary serous cystad-
enoma, cervical intraepithelial neoplasia, atypical hyperplasia of endometrium, and 
pelvic organ prolapse) (control group), respectively [29]. The separated mitochon-
dria were validated with electron microscopy and Western blotting. The extracted 
proteins from the prepared mitochondrial samples were used for iTRAQ-quantitative 
proteomics analysis. The extracted mitochondrial proteins from ovarian cancers 
and controls were analyzed with 6-plex iTRAQ labeling, SCX fraction, and LC-MS/
MS. MS/MS data were used to determine proteins, and the intensities of iTRAQ 
reporter ions were used to determine each mitochondrial DEP. The mitochondrial 
DEPs were further analyzed by bioinformatics including GO functional enrichment 
and KEGG pathway enrichment with DAVID Bioinformatics Resources 6.7.

2.2 Ovarian cancer DEP data and bioinformatic analysis

Proteins were extracted from ovarian cancer and control tissues. The extracted 
proteins from ovarian cancers and controls were analyzed with 6-plex iTRAQ label-
ing, SCX fraction, and LC-MS/MS. MS/MS data were used to determine proteins, 
and the intensities of iTRAQ reporter ions were used to determine each mitochon-
drial DEP [39]. The mitochondrial DEPs were further analyzed by bioinformatics 
including GO functional enrichment and KEGG pathway enrichment with DAVID 
Bioinformatics Resources 6.7.

2.3 TCGA data of ovarian cancer patients and bioinformatic analysis

TCGA (http://cancergenome.nih.gov/) includes 20,115 genes of 419 ovarian 
cancer patients, in the level of transcriptome. Those genes were classified as coding/

Figure 1. 
The experimental flow-chart to study energy metabolic heterogeneity and its molecular mechanisms.

http://cancergenome.nih.gov/
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non-coding RNAs (mRNAs/ncRNAs) provided by the GENCODE/ENSEMBL pipe-
line. lncRNA genes were considered as a type of genes that exclusively produce tran-
scripts of the ‘antisense’. The lncRNA survival analysis was performed by TANRIC 
(http://ibl.mdanderson.org/tanric/_design/basic/index.html). The Kaplan-Meier 
method was used to calculate overall survival. According to median value (3.39) of 
SNHG3 RNA expressions, 419 ovarian cancer patients were divided into SNHG3 
high (>3.39; n = 210) vs. low (<3.39; n = 209) expression groups. TCGA data of 
two groups were analyzed with GSEA enrichment analysis. Moreover, the lncRNA 
expressions from Cancer Cell Line Encyclopedia (https://portals.broadinstitute.
org/ccle), and chemosensitivity of tamoxifen from Genomics of Drug Sensitivity 
in Cancer (http://www.cancerrxgene.org/) were obtained for ovarian cancer cell 
lines. GraphPad Prism v6.0 (GraphPad Software, San Diego, CA, USA) was used to 
construct histogram.

2.4 Integrative analysis of mitochondrial DEPs, tissue DEPs, and TCGA data 
with bioinformatics

The integrated miRNA-lncRNA SNHG3, miRNA-target gene, RNA binding pro-
tein-lncRNA SNHG3, RNA binding protein-mRNA, and protein-protein signatures 
were identified. STRING 10.0 was used predict interactions of chemicals and pro-
teins. Chemicals were linked to other chemicals and proteins by evidence derived 
from experiments, databases and literature (http://string-db.org/cgi/input.pl). The 
large-scale CLIP-Seq data by starBasev 2.0 (http://starbase.sysu.edu.cn/mirCir-
cRNA.php) was used to construct SNHG3-miRNA, protein-miRNA, SNHG3-RNA 
binding protein, mRNA-RNA binding protein, and mRNA-microRNA-lncRNA 
interaction networks. The mitochondrial DEPs in ovarian cancers were input 
into STRING for protein–protein interaction analysis. Network visualizations 
were performed with Cytoscape 3.4.0 (http://www.cytoscape.org/). The binding 
sites of 3′UTR region of targeted genes were predicted with three publicly avail-
able databases (TargetScan, NCBI, and RNAhybrid), sequences of microRNA 
(>hsa-miR-186-5p MIMAT0000456 CAAAGAAUUCUCCUUUUGGGCU) and 
PDHB 3′UTR region. MicroRNA binding sites with PDHB were predicted with 
RNAhybrid database.

2.5 Experimental validation in cell models

Three ovarian cancer cell lines (TOV-21G, SK-OV3, and OVCAR-3), and one 
normal control cell line (IOSE80) from Keibai Academy of Science (Nanjing, 
China) were used. RPMI-1640 medium were used to culture TOV-21G and 
OVCAR-3 cells in 5% CO2 atmosphere at 37°C. DMEM medium (Corning, NY, 
USA) were used to culture IOSE80 and SK-OV3 in 5% CO2 atmosphere at 37°C, with 
supplementation of 10% fetal bovine serum (FBS, GIBCO, South America, NY, 
USA). (i) Transient transfection was performed with Lipofectamine 3000 reagents 
according to the manufacturer’s instructions (Invitrogen, USA). SK-OV3, OVCAR-
3, and TOV-21G were seeded in 6-well plates at 30–50% density. Cells were collected 
at 24–48 h after transfection, for next-step experiments. (ii) RNA extraction and 
quantitative real-time PCR (qRT-PCR) analyses. TRizol® Reagent (Invitrogen, CA, 
USA) was used to extract total RNAs. total RNAs were reversely transcribed into 
cDNAs and then used to perform qRT-PCR analysis to detect SNHG3 and its target 
genes, with β-actin as an internal control. (iii) 1D-SDS-PAGE and Western blotting 
was used to detect PKM, PFKM, PDHB, IDH2, CS, OGDHL, and UQCRH against 
the corresponding antibodies, with β-actin as internal control. (iv) Data were 
expressed as the mean ± SD of triplicates. Each experiment was repeated at least 
three times. In all cases, P < 0.05 was considered as statistical significance.

http://ibl.mdanderson.org/tanric/_design/basic/index.html
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
http://www.cancerrxgene.org/
http://string-db.org/cgi/input.pl
http://starbase.sysu.edu.cn/mirCircRNA.php
http://starbase.sysu.edu.cn/mirCircRNA.php
http://www.cytoscape.org
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Figure 2. 
The changes of key proteins in oxidative phosphorylation, Krebs cycle, and glycolysis pathways. A. The network 
derived from identified genes and pathways. The square box was pathways. The circular box was DEPs. 
The edge was the gene–gene and gene-pathway interactions. The node color from green to red was the gene 
expression level from low to high. The edge color was the correlation level from low to high (gray = 0.70–0.90, 
black = 0.90–1.00). B. Oxidative phosphorylation, Krebs cycle, and glycolysis pathways were altered in ovarian 
cancers. Reproduced from Li et al. [29], with permission from Elsevier, copyright 2018.

3. Results and discussion

3.1 The changes of key proteins in the energy metabolism signaling pathways

The iTRAQ-based quantitative proteomics identified 1198 DEPs between 
mitochondria samples isolated from ovarian cancer and control tissues [29]. The 
statistically significant KEGG pathways were mined with DAVID Bioinformatics 
Resources from those mitochondrial DEPs between EOCs and controls, among 
which those DEPs were significantly enriched in the processes of Krebs cycle, and 
oxidative phosphorylation (OXPHOS) pathways. The key proteins (PDHB, IDH2, 
and UQCRH) were associated with aerobic oxidation to supply in the Krebs cycle, 
and oxidative phosphorylation was upregulated (Figure 2). Interestingly, those 
results were coincided with the reverse Warburg effect proposed in 2009 [10].

The iTRAQ-based quantitative proteomics identified 205 DEPs between ovarian 
cancer and control tissues [13], which revealed the upregulation of the key enzyme 
PKM2 in glycolysis pathway I in ovarian cancers. It was coincided with the Otto 
Warburg effect proposed in 1956 [30]. Warburg discovered that cancer cells tend to 
produce ATP by aerobic glycolysis, even though it is a less efficient pathway con-
trasted with OXPHOS. This popular system, called ‘Warburg effect’, has been the 
dominant mechanism of tumors for energy generations, while its relationship with 
tumorigenesis remains still unclear.

The research of the ‘Warburg effect’ mechanism of a cancer cell has never 
interrupted at home and abroad. PKM2, a splice isoform of the pyruvate kinase, 
serves as a major metabolic reprogramming regulator with an adjustable activity 
subjected to numerous allosteric effectors and post-translational modifications [31]. 
One observed that PKM2 modification was associated with an enhanced glucose 
consumption, level of lipid and DNA synthesis, and lactate productions, indicating 
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that PKM2 transformation promotes the Warburg effect [32]. Then, a novel series 
of inhibitors were developed to anti-Warburg-effect drugs for cancer treatment. 
For example, erastin-like anti-Warburg agents prevent mitochondrial depolariza-
tion induced by free tubulin and decrease lactate formation in cancer cells [33]. 
However, Warburg effect also has some limitations, because it completely ignored 
these facts that cancer cells had a great interaction with tumor microenvironment.

In the 2009, a new model for understanding the Warburg effect was proposed 
in tumor energy metabolism. The hypothesis is that cancer cells induce the aerobic 
glycolysis in neighboring stromal fibroblasts. These cancer-associated fibroblasts 
(CAFs) secrete energy-rich substances, including lactate and pyruvate, to tumor 
microenvironment. These energy-rich metabolites were eaten up by adjacent cancer 
cell and used by mitochondrial TCA cycle, resulting in a higher energy producing 
capacity. It termed this new idea as the “reverse Warburg effect” [10]. Taken all 
together, the reverse Warburg effect is a new energy metabolic pattern identified 
between cancer cells and CAFs, but this novel pattern does not deny Warburg 
effect status and still cannot replace it. Actually, the reverse Warburg effect extends 
energy metabolism content, which explained the nature of the heterogeneity 
and plasticity of cancer metabolism [34]. Although it’s validated that the ‘reverse 
Warburg effect’ can be initiated by oxidative stress in two compartment metabolic 
coupling and change of cellular electromagnetic filed, detailed mechanisms remain 
still unclear.

In order to verify the above of views, each EOC cell line (SK-OV3, TOV-21G, and 
OVCAR-3) showed high expression of energy metabolism-related genes relative to 
control cells IOSE80 by qRT PCR, such as PKM, PDHB, IDH3A, IDH3B, ND5, ND2, 
and CYB in EOC cell lines relative to IOSE80 (Figure 3).

Figure 3. 
The gene expression changes of key proteins in glycolysis, Krebs cycle, and oxidative phosphorylation pathways 
confirmed by qRT-PCR analysis in ovarian cancer cells. *p < 0.05; **p < 0.01; ***p < 0.001. N.S., non-
significance. Reproduced from Li et al. [29], with permission from Elsevier, copyright 2018.
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Figure 4. 
SNHG3 was significantly related to ovarian cancer survival through the key molecules in the energy metabolism 
pathways by their RNA-binding proteins or miRNA. A. Overlapping analysis of identified proteins and RNA 
binding proteins. B. Target DEPs-based protein-protein interaction network (STRING 10.0). C. Overlapping 
analysis of EIF4AIII-binding lncRNAs and lncRNAs involved in ovarian cancer survival. D. Kaplan–Meier 
survival analysis based on ovarian cancer SNHG3. E and F. SNHG3 expressions in ovarian cell lines. 
**p < 0.01; ***p < 0.001. Reproduced from Li et al. [29], with permission from Elsevier, copyright 2018.

3.2 SNHG3 was significantly related to EOC survival through the key molecules 
in the energy metabolism pathways by their RNA-binding proteins or miRNA

Among identified 1198 mitochondrial DEPs and 205 tissue DEPs, PFKM, PKM, 
PDHB, CS, IDH2, IDH3A, IDH3B, OGDHL, ND2, ND5, CYB, and UQCRH were 
enriched in glycolysis, Krebs cycle, and oxidative phosphorylation pathways. Six 
RNA-binding proteins (EIF4AIII, IGF2BP2, C22ORF28, UPF1, SFRS1, and EWSR1) 
were the iTRAQ-identified proteins in ovarian cancers (Figure 4A) based on Starbase 
v2.0 database. However, only EIF4AIII was associated with energy metabolic pathway, 
when did protein-protein network by STRING 10.0 software (Figure 4B).  
Furthermore, overlapping analysis between survival-related lncRNAs of EOC 
and lncRNAs binding with EIF4AIII obtained 16 lncRNAs (LINC00517, SNHG3, 
LBX2-AS1, ZNRF3-AS1, LINC00565, AL109767.1, WWTR1-AS1, HCG15, LEMD1-AS1, 
PDCD4-AS1, KIF9-AS1, SOS1-IT1, STARD13-IT1, PLCH1-AS1, ZNF674-AS1, and 
HOXC-AS3) existed those two groups. Among those 16 overlapped lncRNAs, only 
lncRNA SNHG3 was associated with energy metabolic pathways by GSEA analysis 
(Figure 4C and D and Figure 4A and B). The expression levels of lncRNA SNHG3 in 
different ovarian cancer cell lines indicated that poorly differentiated cell lines existed 
high SNHG3 expression, such as TYK-nu ovarian cancer cell line (Figure 4E).  
Additionally, q-PCR data demonstrated that SNHG3 was upregulated in SKOV3, 
TOV21G, and OVCAR3 relative to control cell line (IOSE80) (Figure 4F).
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One should also notice that gene sets were also significantly enriched in pathway 
of tamoxifen response (Figure 5), which indicated SNHG3 was associated with 
drug sensitivity or multidrug resistance. The comprehensive evaluation on SNHG3 
may lead to ways to improve drug sensitivity of tamoxifen in EOCs.

Gene sets enrichment analysis showed that mRNA metabolism and 3′UTR-
mediated translational regulation (Figure 6). Overlap analysis of RNAs-RNAs 
interaction networks showed that SNHG3 may regulated PDHB through binding 
hsa-miR-186-5p or hsa-miR-590-3p (Figure 7A), especially, hsa-miR-186-5p 
obtained high stringency to target PDHB with Starbase 2.0 analysis. Meanwhile, 
two binding sites were predicted between putative hsa-miR-186-5p and PDHB 
3’UTR with RNAhybrid database (Figure 7B and C). Here, it can be forecasted 
boldly that SNHG3 might regulate the EOC energy metabolism by binding EIF4AIII 
and hsa-miR-186-5p, functioned as efficient sponges to regulate energy metabolism 
pathways though mitochondrial key molecules (Figures 7D and 8A and B).

To further verify that SNHG3 can lead to the carcinogenesis in vivo, SKOV3 cells 
were transfected with either si-SNHG3 or a si-RNA negative control. Target genes, 
including PFKM, PKM, PDHB, CS, IDH2, IDH3A, IDH3B, OGDHL, ND5, ND2, 
CYB and UQCRH turned significant decrease expression (Figure 9). The results 
were further validated to a reasonable degree by Western blot (Figure 10).

Non coding RNAs, as one of epigenetic regulation form, play an important 
role in activation and suppression in a tumor by altering cell energy metabolism 
or biological behaviors [35]. However, lncRNAs have been identified and reported 
to be related to many kinds of carcinomas, little is known about lncRNAs whole 
molecular mechanisms in tumor energy metabolism. Recently, discovery of novel 
biomarkers focuses on ncRNAs, such as miR-125a, MALAT1, let-7a, miR-196a, 
HOXA11-AS, and lncRNA FAL1 [36]. Some biomarkers have been verified consis-
tency in both tissues and serum, which improved clinical application value to use 
in early diagnosis or monitoring patient prognosis [37]. A number of studies have 
shown that lncRNAs can play an important role in tumorigenesis and progression 
through a variety of mechanisms, such as binding transcription factor, acting as 
miRNA sponge, ceRNA (competing endogenous RNAs) [38].

Therefore, lncRNA as an effective screening and their potential mechanisms in 
tumor energy metabolism would be rather influential in EOCs.

3.3 Potential therapeutic targets in metabolic symbiosis

Tumor tissues were made up by parenchymal cells and stromal elements. 
Parenchymal cells probably showed metabolism heterogeneity. So some cancer 
cells were high glycolytic cancer cells consisting with “Warburg effect”, while 

Figure 5. 
The results of SNHG3 by GSEA analysis revealed tamoxifen pathway. A. Genes were enriched in response 
to tamoxifen. B. IC50 of tamoxifen in EOC cell lines. Reproduced from Li et al. [29], with permission from 
Elsevier, copyright 2018.
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Figure 6. 
The results of SNHG3 by GSEA analysis revealed mRNA metabolism and reactome 3′UTR-mediated 
translational regulation. A. Genes were enriched in metabolism of mRNAs. B. Genes were mainly enriched 
in reactome 3′UTR-mediated translational regulation. Reproduced from Li et al. [29], with permission from 
Elsevier, copyright 2018.

other cancer cells were oxidative cancer cells consisting with “reverse Warburg 
effect”. Cancer cells and stroma cells (especially CAFs) have metabolic symbio-
sis, so cancer cells induce oxidative stress of CAFs by secreting ROS to enhance 
aerobic glycolysis of CAFs. In turn, CAFs produced lots of nourishment to be 
‘eaten’ up by cancer cells for producing ATP through Krebs cycle and oxidative 
phosphorylation [13].

MCT-1 and MCT-4 were overexpressed in EOC cells by qRT-PCR experiments, 
including SKOV3, TOV21G and OVCAR3 (Figure 11). Even though tumors were 
characterized by metabolic heterogeneity, MCT-1 and MCT-4 were just like lactate 
shuttle between cancer cells and stroma cells. The nanomaterial-siRNAs of SNHG3 
might be promising for EOC patients to block the abnormal energy metabolism 
(Figure 12).

Figure 7. 
Overlapping analysis of the microRNA/mRNA and microRNA/lncRNAs interactive network. Reproduced 
from Li et al. [29], with permission from Elsevier, copyright 2018.
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Figure 8. 
Schematic model of the potential signaling mechanisms between SNHG3 and energy metabolism in the EOC 
regulation. Reproduced from Li et al. [29], with permission from Elsevier, copyright 2018.

Figure 9. 
The mRNA expression levels of target genes of SNHG3 in EOC cells were determined by qRT-PCR. *p < 0.05, 
** p < 0.01. N.S., non-significance. Reproduced from Li et al. [29], with permission from Elsevier, copyright 
2018.

Figure 10. 
The protein expression levels of target genes of SNHG3 in EOC cells were determined by Western blot. 
Reproduced from Li et al. [29], with permission from Elsevier, copyright 2018.



Molecular Medicine

12

4. Conclusions

The identified 1198 mitochondrial DEPs, 205 tissue DEPs, and TCGA data in 
ovarian cancers provide new insights into human ovarian cancers, particularly 
the energy metabolism heterogeneity that ‘Warburg effect’ and ‘reverse Warburg 
effect’ were coexisted in ovarian cancer tissues. It emphasizes the important 
scientific merit in identity of new useful biomarkers within EOC energy metabo-
lism heterogeneity system for the diagnosis and prognosis of ovarian cancer, and 
discovery of some potential therapeutic targets in energy metabolic interactions. 
Moreover, SNHG3 was related to energy metabolism through regulating hsa- 
miR-186-5p or RNA binding protein EIF4AIII, and those two molecules had target 

Figure 11. 
The expression levels of MCT-1 and MCT-4 in EOC cells were determined by qRT-PCR.  **p < 0.01, 
***p < 0.001. N.S., non-significance. Reproduced from Li et al. [29], with permission from Elsevier, copyright 
2018.

Figure 12. 
Energy metabolic heterogeneity-based potential therapeutic targets model. Parenchymal cells demonstrated 
energy metabolic heterogeneity. Some cancer cells showed the “Warburg effect” with highly glycolytic functions, 
and other cancer cells showed the “reverse Warburg effect” with oxidative cancer cells. The metabolic symbiosis 
existed between tumor cells and CAFs through MCTs. The RNA interference sequence of SNHG3 might be 
effective. Modified from Li et al. [29], with permission from Elsevier, copyright 2018.
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sites with key proteins in TCA cycle and oxidative phosphorylation pathways 
(PDHB, IDH2, and UQCRH). Therefore, energy metabolism-based target treat-
ments might be very promising for ovarian cancer patients to block both ‘Warburg 
effect’ and ‘reverse Warburg effect’.
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mtDEPs mitochondrial differentially expressed proteins
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NOS nitric oxide synthase
OXPHOS oxidative phosphorylation
SCX strong cation exchange
TME tumor-microenvironment
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