
Tomoko M. Nakanishi · Keitaro Tanoi   
 Editors 

Agricultural 
Implications of 
the Fukushima 
Nuclear Accident
The First Three Years



Agricultural Implications of the Fukushima
Nuclear Accident



ThiS is a FM Blank Page



Tomoko M. Nakanishi • Keitaro Tanoi

Editors

Agricultural Implications
of the Fukushima
Nuclear Accident

The First Three Years



Editors

Tomoko M. Nakanishi
Graduate School of Agricultural

and Life Sciences
The University of Tokyo
Bunkyo-ku, Tokyo
Japan

Keitaro Tanoi
Graduate School of Agricultural

and Life Sciences
The University of Tokyo
Bunkyo-ku, Tokyo
Japan

ISBN 978-4-431-55826-2 ISBN 978-4-431-55828-6 (eBook)
DOI 10.1007/978-4-431-55828-6

Library of Congress Control Number: 2015960944

Springer Tokyo Heidelberg New York Dordrecht London

© The Editor(s) (if applicable) and The Author(s) 2016. The book is published with open access at
SpringerLink.com
Open Access This book is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and sources are credited.
All commercial rights are reserved by the Publisher, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt

from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

Springer Japan KK is part of Springer Science+Business Media (www.springer.com)



Foreword

Four years have passed since the Tohoku earthquake struck on March 11, 2011.

With a focus on Fukushima Prefecture, the recovery of regions that incurred

damage from the nuclear power plant accident is continuing, and citizens are

returning to their homes. For the agriculture, forestry, and fishing industries in

Fukushima Prefecture, the nation and the municipality are utilizing methods that

assist exclusion of radioactive materials, e.g., potassium fertilization. Moreover,

there are adequate countermeasures against radiation exposure in Fukushima Pre-

fecture; for example, entire crops of rice are inspected prior to shipment. Through

these countermeasures, all of the products that are introduced in the market are

managed so that they are below the standard limits for radionuclides. However, it

seems that it will take a considerable amount of time for decontamination, for the

decay of radioactive material, and for consumer anxiety about agricultural, forestry,

and fishing products to be dispelled.

Immediately after the accident, the Graduate School of Agricultural and Life

Sciences at The University of Tokyo created an independent team of specialists in a

wide variety of areas including soil, vegetation, animal life, fishing, and forestry.

This team entered the affected areas right after the accident and proceeded with

research and studies. In addition, it was important to the Graduate School of

Agricultural and Life Sciences that the results of this research and these studies

should be useful to the recovery of the affected area; therefore, we have worked to

officially announce these results. For example, there have been 11 meetings to

report research results since November 2011. The objective of these meetings was

to provide a simple explanation of the results of the studies and research so that the

general public could understand.

Right after the first book about the research in Fukushima was published by

Springer, an easy-to-understand book was published in Japanese. That book was

published to allow a wide range of ordinary people to correctly understand the
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impact of radioactive material on agricultural, forestry, and fishing products and the

countermeasures taken against radiation exposure.

It appears that it will still take quite some time for the agricultural, forestry, and

fishing industries in Fukushima Prefecture to recover, but the Graduate School of

Agricultural and Life Sciences at The University of Tokyo will continue to support

the recovery of these industries in the future.

Professor Ken Furuya

Dean, Graduate School of Agricultural and Life Sciences

The University of Tokyo

Bunkyo-ku, Tokyo

Japan
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Preface

More than 4 years have passed since the Fukushima Daiichi nuclear power plant

accident. Even now, some 110,000 people who were evacuated from the area are in

locations away from where they used to live. Right after the nuclear accident, 40–50

academic staff members of the Agricultural Department of The University of Tokyo

began to study the movement of radioactive materials emitted from the nuclear

reactor, because most of the contaminated area in Fukushima is related to agricul-

ture. Researchers are still continuing their work to find out what effects the accident

has had on agricultural fields. Our Graduate School of Agricultural and Life Sci-

ences (The University of Tokyo) comprises many research areas and there are many

facilities attached to the School, such as meadows, experimental forests, and farm

fields. Together with these facilities, many on-site research studies have been

conducted in Fukushima. The projects now ongoing can be illustrated as follows.

vii



Through our activities many scientific findings have been collected. Based on

these scientific data we started lecture classes for students as well as for the general

public to explain the actual movement of radioactivity in nature, along with basic

knowledge about radioactivity. So that students can experience radioecology in

nature for themselves, we are periodically holding open lectures in the contami-

nated fields or mountains.

Field work for Fukushima

The first collection of papers on this subject was published by Springer Japan in

2013. It was made available as an open access book, free to download, so that the

results of the research and studies could be widely shared with foreign and domestic

researchers. We received an extremely large amount of feedback from that effort.

There were many queries from researchers both inside and outside the country, as

well as words of encouragement.

We are continuing with our studies, and we have decided to publish the present

volume as a second collection of papers summarizing the subsequent research

results. This collection will show more detailed results about the transfer of

radioactive material into agricultural products and the movement of radioactive

materials within environments like forests. We hope that this will be of use to

everyone concerned in the same way that the first collection of papers was.

Tokyo, Japan Tomoko M. Nakanishi
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Chapter 1

An Overview of Our Research

Tomoko M. Nakanishi

Abstract The movement of radioactive Cs emitted from the Fukushima Nuclear

accident has been studied by the academic staff of the Graduate School of Agri-

cultural and Life Sciences, The University of Tokyo. The targeted items for

research ranged widely, including soils, plants, animals, fish, mountains, water,

etc. The relevant feature, with regard to the fallout, is that the radioactive Cs has

remained at the initial contact sites and has hardly moved since. However, in the

case of living individuals, such as animals, the amount of radioactivity has

decreased with time at a much faster rate than the physiological half-life because

of their metabolic activities. The biological half-life in animals was estimated to be

within a period of 100 days. Soil plays a major role in fixing fallout. When fallout

nuclides are adsorbed into the soil, plants growing there can absorb little of the

radioactive Cs. In the mountains, radioactive Cs was gradually transferred from

litter to soil and moved little even when washed with heavy rains. The method of

contamination by radioactive nuclides is completely different from that of heavy

metals.

Keywords Fukushima nuclear accident • Fallout • Radioactive Cs movement •

Soil • Plant • Forest • The method of contamination

1.1 Research Project

Immediately after the Fukushima Nuclear accident, the academic staff at the

Graduate School of Agricultural and Life Sciences, The University of Tokyo,

organized several groups to research into the behavior of radioactive materials in

the Fukushima prefecture. The researchers were divided into the following six large

groups and they still continue their work today:

1. Crop plants and soils

2. Livestock and dairy products

T.M. Nakanishi (*)

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi,

Bunkyo-ku, Tokyo 113-8657, Japan

e-mail: atomoko@mail.ecc.u-tokyo.ac.jp
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3. Fishery

4. Environment, including wild life and forest

5. Radioactivity measurement

6. Science communication

Rice is one of the important cereal crops in Japan; however, most of the rice

plants growing in the contaminated soil showed very low radioactivity in the grain,

<500 Bq/kg, which was the initial regulation value. Adding K to soil proved to be

an excellent and most effective way of preventing radioactive Cs uptake by plants.

However, there were some exceptional cases where radioactivity in the rice grain

was >100 Bq/kg, which has become the current revised regulation value for foods.

Such cases are rare, and they have been studied by Prof. Keisuke Nemoto in an

attempt to analyze the origin and chemical form of the radioactive Cs that is easily

absorbed by rice plants in a paddy field. Rice is grown and harvested once a year;

therefore, only one set of data is being collected per year. Thus, only a few data sets

have been accumulated since the accident. This makes it difficult to estimate future

contamination of the cereal crop until more data sets are available. In the case of

crop radioactivity inspection, the Fukushima prefecture has established a system to

measure the radioactivity of all the rice grains before its transfer to market. More

than 10 million rice bags, each containing 30 kg of rice grain produced in

Fukushima, were measured every year. The contaminated rice grain was not sold.

To measure radioactive Cs, we use pure Ge counters and Na(Tl)I counters in our

radioisotope lab. An enormous number of samples of various types, mainly col-

lected by our colleagues, were brought to this lab, and their radioactivity was

measured by professional employees. Over 10,000 samples were measured

per year.

Within a few months after the Fukushima Nuclear accident, most of the radio-

active nuclides measured were radioactive Cs because other radioactive nuclides,

such as 131I, had decayed out because of their relatively short half-lives. Figure 1.1

is an example of measurements using a pure Ge counter showing the gamma-ray

spectrum of rice grains. The gamma-ray energy used to calculate the nuclides 134Cs,
137Cs, and 40K was 604.7, 661.7, and 1460.8 keV, respectively. The respective

detection limits of the nuclides 134Cs, 137Cs, and 40K were 0.7, 0.8, and 23.8 Bq/kg.

In our previous book (Nakanishi and Tanoi 2013), we reported that soil and plant

contamination are different from that of animals. The features of these contamina-

tions are summarized briefly below, with new findings that were not previously

included.
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1.2 Fallout on Soil, Crops, and Trees

1.2.1 Soil

The role of the soil was the most important consideration in the movement of

radioactive Cs which is adsorbed into the very fine clay and organic matter. When

soil from the contaminated fields was collected and radioactivity images of the

fallout were taken, they showed spot-like distribution even after several months. In

addition, the fallout showed no movement. The radioactive Cs was difficult to

separate from the soil by chemical treatment and could only be washed from the soil

during the first few weeks after fallout; the adsorption of radioactive nuclides

became stronger with time, thereby making them more difficult to remove.

Prof. Sho Shiozawa has been measuring the radioactivity of the soil along with

the depth. He set several pipes vertically in the soil and periodically measured the

radioactivity in the pipes along with the depth of the soil. He found that the

downward movement of radioactive fallout is now about 1–2 mm/year, whereas

in the first 3 months after the accident it moved approximately 20 mm/3 months and

then, for the following 3 months, it moved approximately 6 mm/3 months. The

speed of the movement is now much slower.

Prof. Shiozawa also measured the radioactivity at the surface of the basement

soil of ponds, under the water, using a special waterproof survey meter prepared by

himself. The radioactivity at the surface of the soil showed little downward move-

ment with time, similar to land soil. There are two main radioactive nuclides

detectable now: 137Cs and 134Cs. In most cases, the radioactivity of soil under

Cs-134 Cs-137 K-40
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Fig. 1.1 An example of gamma-ray spectrum of rice grains
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water decreased with time, especially because of the relatively short half-life of
134Cs, i.e., 2 years. The ponds he selected were collecting water from the moun-

tains, and he recorded that little radioactive Cs was flowing into the ponds even

after heavy rains.

He found only one pond where the radioactivity of the soil surface under the

water was not decreased. He examined the location and environment of the pond,

especially the surrounding upper mountainous area, and he found that there was a

small village in close proximity to the pond where the people were always washing

roads, houses, etc. using water. As a result of this activity, it seems that some of the

radioactive Cs was removed from the concrete surfaces and flowed into the pond. In

a few years, he will summarize and report these findings.

1.2.2 Crops

The Fukushima Nuclear accident occurred in March, and 2 months later, the ears of

wheat crops developed and were ready for harvest. When the distribution of the

radioactivity in the wheat was measured, to our great surprise, we found that it was

more concentrated in the old leaves, which were exposed to the air at the time of the

accident. The radioactivity of the leaves or ears that developed after the accident

was comparatively very low. The fallout nuclides had hardly moved from the place

where they had first landed, even after a few months.

When the radioactivity image on the leaves was magnified, the shape was still

spot-like. If the radioactive Cs was incorporated into the leaves and had moved

along the phloem or xylem, the vein should have been visible in the leaves. The

behavior of the radioactive Cs emitted from the nuclear accident was different from

the so-called macroscopic Cs chemistry we know. Because the amount of Cs

deposited on leaves was so small, and most of them were carrier-free, the nuclides

seem to behave like radio-colloids, or as if they were electronically adsorbed onto

the tissue.

The radioactive Cs was adsorbed into the soil; therefore, it was unavailable for

plant absorption. The real-time moving pictures taken by Dr. Natsuko I. Kobayashi

were very convincing to many people. She grew rice plants both in water culture

solution and in paddy soil which had been collected from Fukushima. Subse-

quently, 137Cs was supplied to both the water culture solution and the paddy soil,

and a comparison was made between the plants’ absorption of 137Cs. In water

culture, the plants absorbed high amounts of 137Cs within hours, and it was possible

to trace its progress. Because in water culture, 137Cs dissolved as an ion, it was easy

for plants to absorb it. However, in the paddy soil, 137Cs was trapped firmly by the

soil and was unavailable to the plants. Using both 137Cs and 42K tracers,

Dr. Kobayashi noted the effect of K on Cs uptake and the manner of translocation

of Cs in the presence of K.
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1.2.3 Trees

In the forests, leaves became highly contaminated at the time of the accident, and

after falling to the ground and being decomposed by microorganisms, the radioac-

tive Cs that was initially absorbed into the leaves became available to be absorbed

by soil. It was found that radioactive Cs adsorption has been moving from the

leaves to the soil in the forest. The radioactivity in the forest is also decreasing,

along with the decay of 134Cs, which has a half-life of 2 years.

However, as shown in our previous book, the radioactivity of mushrooms

growing in the forest is not decreasing. Some of the mushrooms are still accumu-

lating radioactive Cs that originated from the fallout of the nuclear test bomb during

the 1960s.

In the case of fruit trees, the first question concerns the origin of the radioactive

Cs in the fruit. It was taken for granted that nutrients are absorbed by roots and

delivered to the whole tree. However, the fallout remained at the surface of the soil,

away from the roots. Despite the active root of the peach tree being about 30 cm

below the surface of the soil, where radioactive nuclides do not exist, the fruits still

accumulated radioactive Cs and were slightly contaminated. Few people had

considered that radioactive Cs moves into the bark from the trunk surface and

could then be transferred to the fruits. Dr. Daisuke Takada performed numerous

experiments to determine how radioactive Cs moves within trees, and now some of

the new findings are described in this book.

1.2.4 Summary of Soil, Crop, and Tree Contamination

Most of the radioactive Cs remains adsorbed on the surface of the substances it first

contacted, and the radioactivity image of radioactive Cs still maintains a spot-like

shape, indicating its presence. It is very difficult to remove radioactive Cs from soil

or plants (Fig. 1.2).

Below is a summary of the features of the fallout, i.e., information in the

previous book:

1. The contamination in soil, crops, and trees were found as spots.

2. Emitted nuclides stay where they first landed.

3. They rarely move and stay as spots even after a few years.

4. Only a small portion of the fallout was dissolved in solution and moved.

5. The adsorption manner became stronger with time.

6. Supplying K as a fertilizer is the most effective and efficient way to prevent Cs

uptake by plants.

1 An Overview of Our Research 5



1.3 Fallout on Birds, Fish, and Livestock

1.3.1 Birds

In the case of birds, it was difficult to identify their point of contamination because

they can fly long distances. Associate Prof. Ken Ishida caught several birds in

Fukushima and compared the contamination of their feathers to those caught in

other areas. A radiograph of the feathers revealed the spot-like distribution of the

radioactivity. This distribution pattern was similar to that found in soil or plants.

Radioactive Cs was not removed by washing with chemicals. In the following year,

the same species of birds were caught and examined; however, no radioactivity was

measured in their feathers. The contaminated feathers seemed to have been

renewed or replaced as contaminated birds were only found in the year of the

accident.

Rapeseed

soils

crops

trees

Keitaro Tanoi et al.

Daisuke Takata et al.

Sho Shiozawa et al.

Bq/Kg

Field

Wheat Paddy field

Ear

Stem

Flag leaf

Leaf 1

Leaf 2

Leaf 3

Dead leaf

Fig. 1.2 Features of fallout for soil, crops, and trees. Radioactive Cs was adsorbed in spot-like

distribution at the surface and rarely moved with time
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1.3.2 Fish

The study of contaminated fish was conducted mainly with respect to food safety.

First of all, Prof. Toyoji Kaneko showed how fish excrete Cs into the water, since

they eliminate radioactive Cs faster than its half-life. He showed that fish excrete Cs

in the same way as K from their scale cells.

Fish is a major food source in Japan and many products originate from fish meat.

Prof. Shugo Watabe studied the safety of food products. He measured how radioac-

tivity was reduced during food processing. He targeted a popular food called

Kamaboko, produced from fish meat paste and found <5 % of the radioactivity in

the original fish meat remained in the final products. He found that most of the

radioactive Cs was removed during the process of washing the fine homogenatedmeat.

1.3.3 Livestock

In the case of animals, we found that radioactive Cs appeared in milk soon after

contaminated feeds were given. However, when non-contaminated foods were

supplied, the radioactive materials in the animals were metabolized and decreased.

Similar results were found for animal meat, indicating that when contaminated

animals are identified, it is possible to decontaminate them by feeding them

non-contaminated feeds. In the contaminated area, natural mating of pigs and

wild boars take place and the number of hybrid animals is on the increase. While

eating, pigs and wild boars habitually dig in the soil and seem to inhale or eat a

portion of the surface soil. In comparison, cows eat only plants. As a consequence

of this difference in activity, radioactive Cs in the meat of pigs or wild boars is

much higher than that of cows.

1.3.4 Summary of Bird, Fish, and Livestock Contamination

In the case of birds, fish, and livestock, radioactive Cs was found on feathers,

muscles, and meat or dairy products, respectively. Radioactivity in living animal

tissue was rapidly decreased by feeding non-contaminated foods. The biological

half-life of 137Cs was estimated to be <100 days because of the biological activity

and metabolism, whereas the physical half-life of 137Cs is 30 years. To summarize

the findings, the common features of radioactive Cs fallout are shown in Fig. 1.3.

1 An Overview of Our Research 7



1.4 Radioactive Contamination

There is a great difference between radioactive contamination and contamination

from heavy metals. Some 50–60 years ago in Japan, we experienced much heavy

metal contamination in the environment causing disease to humans. These contam-

inants, such as Cd or Hg, became dissolved in water and spread in the environment.

Subsequently, the contaminated plants, animals, or water were taken up by people

as food and caused serious diseases. For this reason, we fear the movement of

contaminants into the environment. In the case of radioactive nuclides, though they

were emitted from the nuclear power plant, the radioactive fallout did not spread

far away after the settlement. Therefore, it is important to know where the radio-

active nuclides reside in the environment and how they move with time as well as

what is the most effective way to shield the radiation.

At the same time, we need to understand the features of the fallout, including the

types and amount of radioactive nuclides changing with time after the accident.

Because Japan is located in a monsoon area with many paddy fields used to grow

rice, the agricultural environment is similar to that in other Asian countries. The

climate and agricultural environment in Japan is different from those in Chernobyl;

therefore, it is important to gather information regarding the movement or features

of fallout specific to Japan from an agricultural point of view.

Fig. 1.3 Features of fallout for birds, fish, and livestock. In living individuals, radioactive Cs is

decreased through metabolism. The biological half-life of 137Cs is within 100 days
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Chapter 2

Monitoring Inspection for Radioactive
Substances in Agricultural, Livestock, Forest
and Fishery Products in Fukushima
Prefecture

Naoto Nihei

Abstract We summarize the inspections of radiocesium concentration levels in

agricultural, livestock, forest and fishery produced in Fukushima Prefecture, Japan,

for 3 years from the nuclear accident in 2011. The ratio in which radiocesium

concentration exceeded the 100 Bq/kg from March 2011 to June 2011 was 18 % in

agricultural products (excluding rice), 3 % in livestock productions, 49 % in forest

productions, and 52 % in fishery produced. After June 2011, radiocesium concen-

tration reduced drastically. Radiocesium concentration in agricultural and livestock

products hardly exceeded the 100 Bq/kg. On the other hand radiocesium concen-

trations of forest and fishery products have been falling every year, but there were a

little high concentration samples. Soybean is one of the agricultural products,

and the radiocesium concentration is higher than the other agricultural

products. We analyzed the absorption process in soybean in contaminated areas.

The radiocesium concentration of the above-ground part was lateral

root> leaf≒petiole≒pod> stem≒main root. There was a difference in concentra-

tion ratio of radiocesium: potassium among parts of the plant. Comparing 10 soy-

bean varieties, radiocesium concentration of wild soya bean showed more than

twice as high as other varieties. And the radiocesium inside the soybean grain was

distributed generally uniformly throughout the entire grain.

Keywords Monitoring inspection • Agricultural products • Livestock products •

Forest products • Fishery products • Radiocesium • Fukushima prefecture
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2.1 Introduction

The Great East Japan Earthquake occurred on March 11, 2011, and was immedi-

ately followed by the accident at the Fukushima Dai-ichi Nuclear Power Plant

(NPP) of Tokyo Electric Power Company (hereafter referred to as the nuclear

accident). Radioactive materials released during the accident reached agricultural

lands in Fukushima and neighboring prefectures and contaminated the soil and

agricultural products (Yasunari et al. 2011; Zheng et al. 2014). To fulfill the

requirements of the Food Sanitation Act in Japan (Law No. 233 issued in 1947),

on March 17, 2011, the Ministry of Health, Labor and Welfare, Japan (MHLW)

established a provisional regulation level of 500 Bq/kg for radiocesium in cereals,

vegetables, meat, and fishery products. In April 1, 2012, a new maximum limit of

100 Bq/kg was established as a new standard of radiocesium in general food

excluded infant food, milk, water and beverages (Hamada et al. 2012). To revitalize

agriculture within the prefecture, Fukushima Prefecture has been promoting the

decontamination of agricultural land while implementing radioactive substance

absorption suppression measures for agricultural products. To verify the safety of

agricultural, livestock, forest, and fishery products, the Nuclear Emergency

Response Headquarters have been conducting emergency environmental radiation

monitoring of agricultural and fishery products (hereafter referred to as monitoring

inspections) as part of the emergency response in accordance with the special

measure of the Nuclear Disaster Act in Japan. Targeted items and sampling

locations for the monitoring inspections are determined by discussions with munic-

ipalities, consideration of the amount of production, and value of any shipment.

When the results of a monitoring inspection indicate that the level of radiocesium

exceeds 500 Bq/kg (the provisional regulation level, from March 17 in 2011 until

March 31 in 2012) or 100 Bq/kg (the new standard, after April 1 in 2012), the

relevant municipalities are requested to restrict shipments, based on instructions

issued by the Director-General of the Nuclear Emergency Response Headquarters

in Japan. This paper describes the polluted situation of the agricultural, livestock,

forest and fishery products based on the results of the monitoring for 3 years after

the nuclear accident. And soybean is one of the agricultural products, and the

radiocesium concentration is higher than the other agricultural products. We ana-

lyzed the absorption process in soybean in contaminated areas.

2.2 Radiocesium Concentrations in Agricultural,
Livestock, Forest and Fishery Products
for Three Years After the Nuclear Accident
in Fukushima Prefecture

The investigative program required almost 1 week for each item: agricultural,

livestock, forest and fishery products. The extracted samples were washed with

tap water and the edible portions were chopped finely. The samples were packed in
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a container and were measured using the germanium semiconductor detector

(CANBERRA) at Fukushima Agricultural Technology Centre. The detection

limit for radiocesium was approximately 10 Bq/kg. Approximately 500 items,

were monitored to produce 67,000 data points by the end of March 2014

(Fig. 2.1). We considered the samples that were harvested from March to June

2011, from July to March 2012, from April 2012 to March 2013, from April 2013 to

March 2014 (Table 2.1). The radiocesium concentration in each items were classi-

fied as below 10 Bq/kg, from 10 to 100 Bq/kg, from 100 to 500 Bq/kg, and >500

Bq/kg. The results of the monitoring have been released on the homepages of

Fukushima Prefecture and the Ministry of Health, Labour, and Welfare, Japan.

Fukushima Prefecture: http://www.new-fukushima.jp/monitoring.php.

Ministry of Health, Labour, and Welfare: http://www.mhlw.go.jp/stf/houdou/

2r9852000001m9tl.html.

2.2.1 Agricultural Products

Agricultural products include cereals (soybeans, adzuki beans, buckwheat, wheat,

etc., rice is described at a different chapter.), vegetables (spinach, cucumbers,

carrots, tomato, etc.), and fruits (peaches, apples, pears, etc.). Figure 2.2 shows

the concentration of radiocesium and radioiodine in the samples harvested from

March 2011 to March 2014. Concentrations of radiocesium in agricultural products

were the highest immediately after the nuclear accident and rapidly decreased

within the first 3 months. The ratio in which radiocesium concentration exceeded

the 100 Bq/kg from March 2011 to June 2011 was 18 %, and the maximum value

was 82,000 Bq/kg. After July 2011, these concentrations decreased sharply. The

ratio in which radiocesium concentration exceeded the 100 Bq/kg was 3 % from

July 2011 to March 2012, 0 % from April 2012 to March 2013, and 1 % from April

2013 to March 2014. Higher radiocesium concentrations in agricultural products

were observed in soybean, wasabi, plums, kiwis. Radioactive pollution of agricul-

tural products could be divided into direct pollution, in which substances are

deposited directly onto the agricultural products, and indirect pollution, in which
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agricultural products absorb substances from the soil through their roots. Direct

pollution has a greater impact than indirect pollution. The data after July 2011

inspected mainly the agricultural products that had been grown after the nuclear

accident, and the impact of the radiocesium was mainly indirect pollution. There-

fore, these concentrations decreased sharply. A little samples showed a higher

radiocesium concentration than 100 Bq/kg after April 2012, this might be because

these samples were grown with using the agricultural materials which were left

outside during the nuclear accident.

Table 2.1 Radiocesium concentration after Fukushima DNPP accident

Period

Agricultural

products

Forest

products

Livestock

products

Fishery

products

3/17/2011~6/

30/2011

Number of samples 1496 430 387 321

<10 Bq/kg % 66 36 85 14

10~100 Bq/

kg

% 16 16 12 34

100~500 Bq/

kg

% 10 26 3 36

500 Bq/kg< % 8 23 0 16

Max Bq/kg 82,000 13,000 510 14,400

7/1/2011~3/

31/2012

Number of samples 5186 653 5501 3236

<10 Bq/kg % 79 56 90 24

10~100 Bq/

kg

% 17 30 9 41

100~500 Bq/

kg

% 3 9 0 27

500 Bq/kg< % 0 5 0 5

Max Bq/kg 2400 28,000 460 18,700

4/1/2012~3/

31/2013

Number of samples 9450 1180 6895 6895

<10 Bq/kg % 90 60 99 46

10~100 Bq/

kg

% 9 32 1 41

100~500 Bq/

kg

% 0 6 0 12

500 Bq/kg< % 0 2 0 2

Max Bq/kg 1460 5600 146 1004

4/1/2013~3/

31/2014

Number of samples 10,378 1465 5476 8497

<10 Bq/kg % 85 69 99 72

10~100 Bq/

kg

% 14 25 1 25

100~500 Bq/

kg

% 1 4 0 3

500 Bq/kg< % 0 2 0 0

Max Bq/kg 342 11,870 83 1720
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2.2.2 Radiocesium Absorption in Soybean

Soybean is the global production volume is approximately 250 million tons. This is

the fourth largest production volume after wheat, rice and corn. According to

monitoring inspection, the ratio of samples exceeding the new standard value of

radiocesium (100 Bq/kg) was found to be 5.7 % for soybean, 2.6 % for rice, 11 %

for wheat in 2011, 2.6 % for soybean, 0.0007 % for rice and 0 % for wheat in 2012,

1.9 % for soybean 0.0003 % for rice, 0 % for wheat in 2013 (Fig. 2.3). In other

words, the monitoring inspections indicated that the ratio of soybean that had

exceeded 100 Bq/kg was high compared with rice and wheat for 3 years and that

the tendency for decline was low compared with rice and wheat. There are culti-

vation areas of soybean following rice. In order to make recovery and revitalization

of agricultural industries, analysis of the absorption process in soybean was

conducted by cultivation in contaminated areas.

2.2.2.1 Absorption of Radiocesium in Soybean in the Contaminated
Areas

To study the absorption process of soybean in the contaminated areas, soybean (var.

Fukuibuki) was grown by no fertilizing in Iitate Village, Fukushima Prefecture on

June 29, 2013 (Fig. 2.4). The radiocesium of the field was approximately

13,000 Bq/kg (depth 15 cm), exchangeable potassium was 15.8 mg/100 g, and

pH was 6.2.

Fig. 2.2 Progress of radiocesium concentration after Fukushima DNPP accident. (a) agricultural
products, (b) forest products, (c) livestock products, (d) fishery products, ND not detected, 100 Bq/

kg: the new standard value of radiocesium concentration
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The radiocesium absorption in soybean was observed from the initial stage of

growth, and the absorption increased together with the weight of the above-ground

portion until the middle of September (maximum growth period) (Fig. 2.5). Soybean

continues nutrient growth even after the flowering period, and the period of continu-

ing nutrient growth is thought to be when radiocesium is being absorbed. When the

concentration of radiocesium was measured for each part of the plant at the middle of

September, the differences were observed. The radiocesium concentration of the

above-ground part was observed: lateral root> leaf≒petiole≒pod> stem≒main root

(Fig. 2.6). For the concentration of potassium, which is a homologous element of

cesium, the following was observed: petiole> pod> leaf≒stem>main root≒lateral

root. There was a difference in concentration ratio of radiocesium to potassium. The

difference in distribution within the plant between radiocesium and potassium has
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(b) 2012, (c) 2013
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been pointed out for rice (Tsukada et al. 2002), and the distribution of soybean is

similar to rice.

2.2.2.2 Differences Between Soybean Variety

If there is a difference in radiocesium absorption between varieties, it would offer

the reduction technology of radiocesium absorption that could immediately be

introduced in the contaminated areas, and it would be expected that varietal

difference leads also to the mechanism elucidation of cesium absorption. The

differences in radiocesium absorption between varieties have been conducted on

rice (Ohmori et al. 2014). In this paper, the absorption of radiocesium was studied

comparing 10 varieties of soybean in Iitate Village, Fukushima Prefecture. The

samples were parental lines that held cross-fertilization later generations, varieties

A (wild soya bean) and B which were obtained from the National BioResource

Project, and cultivation varieties which had grown inside Fukushima Prefecture

(C to J).

Fig. 2.4 Soybean in Iitate

Village
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Figure 2.7 shows the transfer factor to grain of different varieties. When com-

pared with the parental line A and B, A showed a tendency to be about twice as high

as B. The transfer factor of the C to J did not have a large difference. No clear

tendency based on the grain size was observed. No clear correlation between the

grain radiocesium concentration and the grain potassium concentration was
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observed. We plan to use later generations of cross-fertilization between A and B to

study the genetic locus involved in the absorption of radiocesium.

2.2.2.3 Distribution of Cesium in Soybean Grain

To study the distribution of radiocesium in soybean grain, sections of soybean grain

cultivated using liquid culture medium with added radiocesium (137Cs) were

contacted to an IP (imaging plate, Fujifilm Co.), and autoradiography was obtained.

The radiocesium inside the soybean grain was distributed generally uniformly

throughout the entire grain. For the radiocesium of the rice grain, it was reported

that radiocesium was topically higher in the embryo and aleurone layer, and we

have shown that radiocesium distributions inside soybean and rice are different.

This is considered to be due to the difference in seed storage tissue. The rice grain

stores nutrients (include potassium) in the embryo, and starch and protein is

accumulated in the endosperm. We guess the radiocesium stores in the embryo

rather than in the central part of the rice grain. However, as the soybean grain is an

exalbuminous seed, the nutrients, starch and lipids accumulate in the cotyledon,

which comprises a large portion of the seed. Thus, the nutrients store uniformly

inside the grain, and it is thought that the cesium, like the other nutrients, is

distributed uniformly inside the grain. The form in which nutrients accumulate is

different between rice and soybean, and the mineral constituent of soybean is about

five times that of rice. The high accumulation of nutrients inside the grain is thought

to be one factor for the high accumulation of cesium in soybean.

2.3 Livestock Products, Forest Products, Fishery Products

Livestock products include beef, pork, raw milk, chicken eggs et al. Monitoring of

radioactive concentrations in livestock products began with raw milk immediately

after the nuclear accident. Radioactiveiodine that exceeded the provisional regula-

tion level (2000 Bq/kg) was detected in raw milk between March 2011 and June
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Fig. 2.7 Transfer factor to soybean grains of different varieties
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2011 (data not shown). Beef which were over 500 Bq/kg of radiocesium concen-

trations were detected between March 2011 and June 2011 (Fig. 2.2). But both

radioactive iodine and cesium of livestock products decreased from July 2011. Beef

which were over 500 Bq/kg of radiocesium concentrations might have been due to

the supply animals with the polluted feeds by radiocesium. The government and

Fukushima prefecture have called farmers not to feed hays and grass that was

outside at the nuclear accident to prevent further contamination of livestock

products.

Forest products include edible wild plants (bamboo shoots, fatsia sprouts, etc.),

mushrooms. Measurements for cesium in forestry products began in late March

2011, which is also the beginning of the harvest season for edible wild plants. The

ratio in which radiocesium concentration exceeded the 100 Bq/kg was 49 % from

March 2011 to June 2011, 14 % from July 2011 to March 2012, 8 % from April

2012 to March 2013, and 6 % from April 2013 to March 2014 (Fig. 2.2). This result

identified a high trend in radiocesium concentrations for forestry products com-

pared to agricultural or livestock products. Radiocesium concentrations remained

high even after July 2011, suggesting that forestry products were not only polluted

directly with radiocesium released from the nuclear disaster, but also indirectly

with the absorbed radiocesium from the soil. Especially bamboo shoots,

‘koshiabura’ (Acanthopanax sciadophylloides), fatsia sprouts (Aralia elata

Seem.), and wild mushrooms were detected with high radiocesium concentrations.

The ratio of fishery products in which radiocesium concentration exceeded the

100 Bq/kg was 52 % fromMarch 2011 to June 2011, 32 % from July 2011 to March

2012, 14 % from April 2012 to March 2013, and 3 % from April 2013 to March

2014, and the maximum value was 18,700 Bq/kg (Fig. 2.2). This result indicates

that radiocesium concentration of fishery products have been falling every year, but

high concentration remain as well as forestry products. There are difference

according the kind of fish, octopus and squids are low, on the other hand cod and

stone flounder are high.

Four years have passed since the accident, and we expect to see the sequential

reopening of agriculture even in the evacuated regions. In order to provide safe

agricultural crops, not only do we think it is necessary to continue monitoring tests,

but we would also like to continue research that contributes to the efforts of

agricultural recovery and revitalization in the areas contaminated by the nuclear

accident.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 3

Rice Inspections in Fukushima Prefecture

Naoto Nihei

Abstract We summarize the inspections of radiocesium concentration levels in

rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident

in 2011. In 2011, three types of verifications, preliminary survey, main inspection,

and emergency survey, revealed that rice with radiocesium concentration levels

over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was

identified in the areas north and west of the Fukushima nuclear power plant. The

internal exposure of an average adult eating rice grown in the area north of the

nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture

authorities decided to investigate the radiocesium concentration levels in all rice

using custom-made belt conveyor testers. Notably, rice with radiocesium concen-

tration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were

detected in only 71, 28 and 2 bags out of the total 10,338,000 in 2012, 11,001,000 in

2013 and 10,988,824 in 2014, respectively. We considered that there were almost

no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from

the nuclear accident, and the safety of Fukushima’s rice were ensured because of

the investigation of all rice.

Keywords Rice • Radiocesium • Monitoring inspection • Inspection of all rice •

Belt conveyor tester • Fukushima prefecture

3.1 Introduction

The Great East Japan Earthquake occurred on March 11, 2011, and was immedi-

ately followed by the accident at the Fukushima Dai-ichi Nuclear Power Plant

(NPP) of Tokyo Electric Power Company (hereafter referred to as the nuclear

accident). Radioactive materials released during the accident reached farmlands

in Fukushima and neighboring prefectures and contaminated the soil and agricultural

products (Yasunari et al. 2011; Zheng et al. 2014). Rice is the main staple food

of the Japanese diet, and it is the most valuable agricultural product in Fukushima
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Prefecture. Hence, the Central Government of Japan requested suspension of rice

planting as a precaution in 2011, based on a special measure of the Nuclear Disaster

Act, to the relevant municipal governments that were in the controlled areas within a

20-km radius of the Fukushima Dai-ichi NPP, and where radiocesium exceeding

5000 Bq/kg was detected in the soil. In 2012, as a precaution, rice planting was

suspended in areas that produced rice with radiocesium levels exceeding 500 Bq/kg

in 2011 and in areas where evacuation orders had been issued. Fukushima Prefecture

and the Central Government of Japan have issued more detailed directives for the

inspection of rice within the prefecture compared to other agricultural products

(Table 3.1). The results of these inspections are publicly announced first in news-

papers and then on Fukushima Prefecture webpage and Fukushima-no Megumi

Anzen Taisaku Kyogikai webpage. Based on these results, this study analyzes the

radioactive content in rice in the 3-year period after the nuclear accident, and it also

evaluates the performance of the equipment used to inspect all rice.

3.2 Inspections in 2011

3.2.1 Inspection Method

Monitoring inspections are conducted on three samples in each municipality for

each item; however, for rice, the number of samples for inspection is significantly

higher. At first, a preliminary survey before harvest was conducted to understand

the trends in radioactive content in rice. The sampling was performed about 1 week

before harvesting, and a total of 441 samples were analysed. Next, a main inspec-

tion was conducted based on the preliminary survey. Two samples were collected

for every 15 ha in municipalities where the radiocesium concentration levels

exceeded 200 Bq/kg in the preliminary survey, and two samples were collected in

every former municipality in other survey sectors. Unpolished rice was collected by

reaping from the standing crop and then threshed, dried, and processed. In this

manner, a total of 1174 samples were analysed. The inspection method involved

filling 100 ml containers with rice and taking measurements for 2000 s using a

germanium semiconductor detector at the Fukushima Agricultural Technology

Table 3.1 Inspections of rice from 2011 to 2013

Year 2011 2012 2013

Name of

inspection

Preliminary surveys

and main inspections

Comprehensive rice bag

inspections

Comprehensive rice bag

inspections

Measuring

instrument

Germanium semicon-

ductor detector

Belt-conveyor-type

radiocesium concentration

tester

Belt-conveyor-type

radiocesium concentration

tester

Number of

inspection

1624 10,331,526 10,949,026
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Centre (conducted in accordance with the “Manual for Measuring Radioactivity of

Foods in Cases of Emergency” published by the Ministry of Health, Labour and

Welfare, JAPAN (MHLW)). The detection limit was approximately 10 Bq/kg, and

the results have been publicly announced on Fukushima Prefecture website. An

emergency survey after the main inspection was undertaken by Fukushima Prefec-

ture itself to reassure the public about food safety. The inspections were conducted

on one or more samples per farm household in areas where measurements during

the main inspection or preliminary survey exceeded detection limit values, 10 Bq/

kg. Sampling was performed in a total of 23,247 farm households, using NaI or

other types of scintillation counters. The survey methods and results have been

publicly announced on the Fukushima Prefecture website.

Preliminary surveys: http://www.pref.fukushima.lg.jp/sec/36035b/23yobichousa-

kekka.html

Main inspections: http://www.pref.fukushima.lg.jp/sec/36035b/23honchousa-

kekka.html

Emergency surveys: http://www.pref.fukushima.lg.jp/sec/36035b/daishinsai-

23komehoushaseibusshitsu-kinkyuuchosa-kekka-syukkaseigen.html

3.2.2 Results

Table 3.2 shows a ratio of radiocesium for every area. For compiling the results,

areas were classified into seven administrative sectors according to their distance

from the nuclear power plant (Fig. 3.1). In the preliminary survey and main

inspection of 2011, 1.7 % and 4.4 % of rice samples had radiocesium concentration

levels of 100 Bq/kg or more in Area 1 and Area 3 respectively, which indicates that

highly contaminated rice was produced in some parts of Areas 1 and 3. These

region were within 100 km northwest of the nuclear power plant, and highly

contaminated by the deposited radiocesium (Hirose 2012; Kinoshita et al. 2011),

because the plume released from the nuclear power plant from about 12 to 15 JST

(Japanese Standard Time) on 15 March 2011 flowed northwestward and wet

deposition with precipitation occurred in the nighttime of the same day (Chino

et al. 2011). Therefore, the proportion of rice with 100 Bq/kg or higher was greater

in these areas than for other areas in 2011. However, there were many samples with

25 Bq/kg or lower in these same areas in 2011; thus, there was a range of

radiocesium concentration levels within rice in a given area. Hence, the actual

spread of radiocesium was heterogeneous, and the exchangeable potassium content

of the soil (Tensho et al. 1961) and the soil type (Tsumura et al. 1984), both of

which affect the absorption rate of cesium by crops, were also heterogeneous. In

addition, the radiocesium concentration levels in rice were lower in Area 2 (which

was at the similar distance from the nuclear power plant as Area 1) and in Areas

4 and 5 (which were at the similar distance from the plant as Area 3) and received a

lower radiocesium concentration in the agricultural land. The radiocesium
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Table 3.2 Inspection result of rice for 3 years

(a) 2011 (Preliminary surveys and main inspections)

Region

Total

number of

inspection

Ratio (%)

~25 Bq/

kg 25 Bq/kg ~ 100 Bq/kg 100 Bq/kg ~ 500 Bq/kg

500 Bq/

kg~

Area1 45 40.0 55.6 4.4 0.0

Area2 122 70.5 28.7 0.8 0.0

Area3 576 65.3 33.0 1.7 0.0

Area4 370 89.5 10.5 0.0 0.0

Area5 155 87.1 12.9 0.0 0.0

Area6 306 98.7 1.3 0.0 0.0

Area7 50 100.0 0.0 0.0 0.0

Total 1624 79.9 19.3 0.8 0.0

(b) 2012 (Comprehensive rice bag inspections)

Region

Total

number of

inspection

Ratio (%)

~25 Bq/

kg 25 Bq/kg ~ 100 Bq/kg 100 Bq/kg ~ 500 Bq/kg

500 Bq/

kg~

Area1 204,315 99.6 0.4 0.0 0.0

Area2 519,593 99.7 0.3 0.0 0.0

Area3 1,299,453 99.0 1.0 0.0 0.0

Area4 3,328,643 99.9 0.1 0.0 0.0

Area5 1,520,043 99.8 0.2 0.0 0.0

Area6 3,153,887 100.0 0.0 0.0 0.0

Area7 305,592 100.0 0.0 0.0 0.0

Total 10,331,526 99.8 0.2 0.0007 0.0

(c) 2013 (Comprehensive rice bag inspections)

Region

Total

number of

inspection

Ratio of radiocesium (%)

~25 Bq/

kg 25 Bq/kg ~ 100 Bq/kg 100 Bq/kg ~ 500 Bq/kg

500 Bq/

kg~

Area1 259,172 98.8 1.2 0.0 0.0

Area2 558,018 100.0 0.0 0.0 0.0

Area3 1,388,313 99.8 0.2 0.0 0.0

Area4 3,517,451 100.0 0.0 0.0 0.0

Area5 1,582,008 100.0 0.0 0.0 0.0

Area6 3,330,114 100.0 0.0 0.0 0.0

Area7 313,950 100.0 0.0 0.0 0.0

Total 10,949,026 99.9 0.1 0.0003 0.0

(d) 2014 (Comprehensive rice bag inspections)

Region

Total

number of

inspection

Ratio of radiocesium (%)

~25 Bq/

kg 25 Bq/kg ~ 100 Bq/kg 100 Bq/kg ~ 500 Bq/kg

500 Bq/

kg~

Area1 301,322 99.9 0.1 0.0 0.0

Area2 565,800 100.0 0.0 0.0 0.0

Area3 1,440,598 99.9 0.1 0.0 0.0

Area4 3,575,402 100.0 0.0 0.0 0.0

(continued)
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concentration level in the agricultural land was also low in Areas 6 and 7, which

were more than 100 km away from the nuclear power plant to the west. The

proportion of rice with radiocesium content of 25 Bq/kg or lower in Areas 6 and

7 was 98.7 % and 100 %, respectively, indicating minimal impact from

radiocesium.

Table 3.2 (continued)

(d) 2014 (Comprehensive rice bag inspections)

Region

Total

number of

inspection

Ratio of radiocesium (%)

~25 Bq/

kg 25 Bq/kg ~ 100 Bq/kg 100 Bq/kg ~ 500 Bq/kg

500 Bq/

kg~

Area5 1,548,140 100.0 0.0 0.0 0.0

Area6 3,251,179 100.0 0.0 0.0 0.0

Area7 306,383 100.0 0.0 0.0 0.0

Total 10,988,824 100.0 0.02 0.00002 0.00

Area 1

Fukushima

Dai-ichi NPP

Area 2

Area 4

Area 5

Area 6

Area 7

Area 3

Fig. 3.1 Seven administrative sectors of Fukushima Prefecture. (a) Seven administrative sectors

of Fukushima prefecture; Area 1 is 30–50 km to the NPP (Soso District), Area 2 is 30–50 km to the

south of the NPP (Iwaki District), Area 3 is approximately 30–80 km to the northwest of the NPP

(Ken-poku District), Area 4 is approximately 20–70 km west of the NPP (Ken-chu District), Area

5 is approximately 40–80 km to the southwest of the NPP (Ken-nan District), Area 6 is approx-

imately 70–130 km to the west of the NPP (Aizu District), and Area 7 is between 100 and 150 km

west of the NPP (Southern Aizu District). Area 1, 2 are called Hamadori (Coastal region); Area

3, 4, and 5 are called Nakadori (Central region); and Area 5, 6 are called Aizu. NPP nuclear power

plant
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3.3 Inspections in 2012, 2013 and 2014

3.3.1 Inspection Method

The inspections conducted by Fukushima Prefecture in 2012 targeted all the rice

produced within Fukushima Prefecture (approximately 360,000 t) to reassure the

public about food safety (named as inspection of all rice in all rice bags, hereafter

referred to as inspection of all rice). The measurement of radiocesium concentration

of all rice was considered to be the very first challenge in the world.

For this purpose, manufacturers have developed and produced equipment that can

efficiently inspect all rice in Fukushima.Moreover, prefectures andmunicipalities have

compiled information on individual farm households and built inspection frameworks.

Because there were limitations on the number of germanium semiconductor

detectors available, and monitoring inspections would have taken considerable

time, manufacturers were requested to develop a belt-conveyor-type radiocesium

concentration tester (hereafter referred to as the belt conveyor tester) for taking

measurements. The belt conveyor testers were equipped with NaI or other types of

scintillation counters, and the entire measurement section was shielded by lead or

iron. Rice bags weighing 30 kg passed along the belt at a rate of two or three rice

bags per minute and were examined to ensure whether radiocesium concentration

level exceeded 100 Bq/kg, which was stipulated by the Food Sanitation Act. This

measurement method was conducted according to the “Screening Method for

Radioactive Cesium in Food Products,” as indicated by the MHLW, which stipu-

lates that the value of each screening level calculated using individual equipment

must be half or more of the standard value (100 Bq/kg). Fukushima Prefecture

installed approximately 200 belt conveyor testers in various areas throughout the

prefecture, and inspections were performed to coincide with shipments from pro-

ducers. The scheme for the inspection of all rice is shown in Fig. 3.2, and can be

described as follows: (1) farmers carry their rice bags to an inspection station,

(2) their rice bags are sealed with a bar code label that includes the farmer’s

A belt 

coveyor

tester

Rice bag

Farmers carry their rice bags in 

an inspection station

An investigator loads the rice 

bag on a belt conveyor tester.

A belt conveyor tester

inspects a concentration of

radiocesium of the rice bag

for 20-30 seconds.

After confirming less than

the screening level, the rice

bag is attached with

the label, and is shipped

The label which

indicate go through

the inspection

Fig. 3.2 Overview of the inspection of all rice performed from 2012
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information, (3) the investigators load the rice bag on a belt conveyor tester and

upload the farmer’s information with a bar code reader, and (4) the belt conveyor

tester measures the radiocesium concentration levels from each rice bag for

20–30 s. If the inspection result is less than the screening level, a label bearing an

individual identification number is attached to the rice bag indicating the bag was

inspected, and then the bag is shipped. If the screening level is exceeded, the bag is

further subjected to a more detailed inspection using a germanium semiconductor

detector, and it is isolated and stored until the measurement value is finalized. The

result for each rice bag and the results for the rice produced from each area are

posted on Fukushima-no Megumi Anzen Taisaku Kyogikai website.

Fukushima-no Megumi Anzen Taisaku Kyogikai (inspection of all rice): https://

fukumegu.org/ok/kome/.

3.3.2 Results

The results of the inspection of all rice in 2012 are shown in Table 3.2. For

Fukushima Prefecture as a whole (n¼ 10,338,291), 99.8 % of the locations had

measurements of 25 Bq/kg or lower, 0.2 % had measurements higher than

25–100 Bq/kg, and only 71 bags (less than 0.001 %) exceeded 100 Bq/kg. The

results of the inspection of all rice in 2013 are similar to that in 2012. Only 28 bags

out of 11,001,000 exceeded 100 Bq/kg, which corresponds to 0.0003 %. 99.9 % of

rice bags had measurements of 25 Bq/kg or lower.

A comparison of the results from 2011 to 2014 reveals that 0.8 % of all areas in

the entire Fukushima Prefecture had contaminated rice with radiocesium concen-

tration levels higher than 100 Bq/kg in the preliminary survey and main inspection

in 2011, subsequently only 0.0007 %, 0.0003 % and 0.00002 % of bags had

contaminated rice with over 100 Bq/kg of radiocesium in 2012, 2013 and 2014

(Fig. 3.3). The reason for this significant decline is assumed to be the physical

reduction of radiocesium in the soil caused by factors such as decay of 134Cs,

fixation to the soil clay, decontamination by reversal tillage, and the effects of a

thorough soil improvement effort implemented to increase the exchangeable potas-

sium content to approximately 25 mg/100 g (dry soil) or higher, which is the

guideline announced by Ministry of Agriculture, Forestry and Fisheries, Japan

from 2012. Moreover, planting was restricted in 2012 (by orders from the Central

Government of Japan) in areas where rice in 2011 had levels exceeding 500 Bq/kg,

most of which was located in Area 3, as shown in Table 3.2.

The inspections were conducted immediately after the harvesting of rice in 2012,

2013, and 99 % of the entire amount was inspected during a 4-month period, from

September to December 2012 (Fig. 3.4). In October of 2012 and 2013, about

6,500,000 samples were inspected in a month, which was the peak of the inspection

number. Since the inspections were conducted using approximately 200 counters,

the inspection in October was performed about 1000 samples per day by a single

unit. This means that if measurements are assumed to have been taken over an 8-h

3 Rice Inspections in Fukushima Prefecture 29
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period in a given day, two bags were inspected every minute. It is indicated that the

belt conveyor tester can be considered an effective method for screening.

Rice is the main staple food of the Japanese diet, and it is the most valuable

agricultural product in Fukushima Prefecture. Therefore, after the nuclear accident

at Fukushima Dai-ichi NPP, inspections were performed thoroughly for rice than
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100%

2011 2012 2013 2014
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100–500 Bq/kg
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19.27%
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Fig. 3.3 Ratio of radiocesium concentration in rice for 4 years
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for other agricultural products. Note that the proportion of rice with radiocesium

concentrations exceeding 100 Bq/kg was 0.8 % in 2011 and dropped to a mere

0.0007 % (71 bags out of the total 10,338,000), 0.0003 % (28 bags out of the total

11,001,000) and 0.00002 % (2 bags out of 10,988,824) in 2012, in 2013 and in

2014, respectively. In future, as agricultural operations restart in areas where

planting is currently restricted, securing the safety of rice by thorough inspections

and accurately communicating the inspection results will continue to be critical

tools to reassure the public about food safety.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 4

Cesium Accumulation in Paddy Field Rice
Grown in Fukushima from 2011 to 2013:
Cultivars and Fertilization

Yoshihiro Ohmori, Nobuhiro Tanaka, and Toru Fujiwara

Abstract After the accident at the Fukushima Daiichi Nuclear Power Plant,

radioactive cesium (Cs) was released and the agricultural fields in Fukushima

were contaminated. It became important to obtain data for radioactive Cs accumu-

lation in rice grown in contaminated fields. We conducted a 3-year investigation in

a Fukushima paddy field of radioactive Cs concentrations in various rice cultivars,

and in two commercial rice cultivars grown under four different nutrient conditions.

Our studies demonstrated substantial variation in radioactive Cs concentrations

among the rice cultivars, and an increase in radioactive Cs concentrations in

straw and brown rice under high nitrogen and low potassium conditions. Our 3-year

investigations of radioactive Cs-contaminated rice in Fukushima paddy field shows

that the rice grown in Fukushima is now well-monitored and contains much less

than the allowed levels of radiation (100 Bq kg�1).

Keywords Radioactive cesium • Straw • Brown rice • Rice cultivars • Fertilizer

effect • Fukushima paddy field

4.1 Introduction

The accident at the Fukushima Dai-ichi Nuclear Power Plant in March 2011

released radionuclides to the broader area including the paddy fields around the

nuclear power plant. The radioactive isotopes of cesium (Cs) have relatively long

half-lives among the released radionuclides (2.06 years for 134Cs and 30.2 years for
137Cs) (Matsumura et al. 2011). Contamination of agricultural products by radio-

active Cs will thus be a serious problem for a long time. We have previously

reported the accumulation of radioactive Cs among different rice cultivars, and the
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effects of fertilizer on the accumulation of radioactive Cs in rice (Ohmori

et al. 2014a, b). Here, we review these reports.

Cesium is an alkali metal, which is absorbed from the soil by roots and

transported to various parts of rice plants, such as the brown rice and straw,

which are served as foods for human and livestock, respectively. To reduce the

Cs accumulation in rice, we need to understand the mechanism of Cs uptake and

transportation in rice plants. Cs accumulation in rice is thought to be determined by

both genetic and environmental factors. We measured the radioactive Cs concen-

tration in 85 rice cultivars to find the genetic factors, and we investigated the effects

of fertilizer on radioactive Cs accumulation in rice plants to reveal the environ-

mental factors.

4.2 Difference in Radioactive Cesium Accumulation
Among Rice Cultivars Grown in the Paddy Field at
Fukushima from 2011 to 2013

4.2.1 Radioactive Cesium Accumulation Among 85 Rice

Cultivars Grown in Fukushima Paddy Fields in 2011

Cesium is an alkali metal that is not essential to plant growth, but is toxic.

Potassium (K) also belongs to alkali metal group, and it is an essential element

for plant growth. It is believed that both Cs uptake and transport are mediated by K

transporters. In Arabidopsis, one of the KUP/HAK/KT type transporters, AtHAK5,

plays a role in non-radioactive cesium (133Cs) absorption under low K conditions

(Qi et al. 2008). In addition, AtCNGC1 is a candidate gene for determining the

natural variation of Cs concentrations (Kanter et al. 2010). However, the whole

mechanism of Cs uptake and transport remains unclear.

To reduce Cs accumulation in rice, it is crucial to understand that there is

variation in Cs uptake among different rice cultivars. The difference in 133Cs

concentrations in brown rice among different rice cultivars has been reported

(Yamaguchi et al. 2012), and the concentration of 137Cs in rice grown in Aomori

Prefecture before the Fukushima accident has also been reported (Tsukada

et al. 2002). However, the amount of radioactive Cs fallout from the Fukushima

Dai-ichi Nuclear Power Plant after the earthquake in 2011 was much higher than

that derived from past fallout. Thus, a reinvestigation of the accumulation levels of

radioactive Cs in rice is needed in the Fukushima area.

We selected 85 rice cultivars from the World Rice Core Collection (WRC), the

Japanese Rice Landrace Mini Core Collection (JRC), and other domestic varieties

(Table 4.1). The WRC consists of 67 varieties and covers 91 % of the genetic

variation in about 37,000 rice landraces. The JRC consists of 50 varieties and

covers 87.5 % of genetic variation in about 2000 Japanese rice landraces (Ebana

et al. 2008; Kojima et al. 2005). We planted the 85 rice cultivars in the Fukushima

paddy field on May 31st, 2011, and harvested them on September 23rd, October

34 Y. Ohmori et al.



Table 4.1 List of the 85 rice cultivars tested in this study

Number Cultivar name Number Cultivar name

1 Karahoushi 44 Kabashiko

2 Houmanshindenine 45 Jamaica

3 Mansaku 46 Shichimenchou Mochi

4 Himenomochi 47 Khauk Yoe

5 Akage 48 Tachisugata

6 Hassokuho 49 Shiroine

7 Kahei 50 Mizuhochikara

8 Shinyamadaho 2 51 Akamai

9 Aichiasahi 52 Kusanohoshi

10 Hamasari 53 Sekiyama

11 Hakamuri 54 Fukoku

12 Shinriki Mochi 55 Shinriki

13 Raiden 56 Leaf Star

14 Puluik Arang 57 Chinya

15 Ginbouzu 58 Gaisen Mochi

16 Vary Futsi 59 Meguro Mochi

17 Ishijiro 60 Senshou

18 Nipponbare 61 Moritawase

19 Mogumoguaoba 62 Momiroman

20 Bekogonomi 63 Yamada Baka

21 Nishiaoba 64 Hetadawee

22 Nagoyashiro 65 Taichung 65

23 Aikoku 66 Mack Kheua

24 Kameji 67 Rikutou Rikuu 2

25 Yumeaoba 68 Omachi

26 Moroberekan 69 Chinsurah Boro 2

27 Hosogara 70 Hiyadachitou

28 Kasalath 71 Okka Mososhi

29 Kyoutoasahi 72 Daw Dam

30 Co 13 73 Deng Pao Zhai

31 Tachiaoba 74 Basilanon

32 Bekoaoba 75 Koshihikari

33 Kusahonami 76 Badari Dhan

34 Dango 77 Hoshiaoba

35 Tupa 121-3 78 Asominori

36 Hirayama 79 Kaneko

37 Naba 80 Oiran

38 Hinode 81 Khau Mac Kho

39 Muha 82 Joushuu

40 Touboshi 83 Wataribune

41 Bouzu Mochi 84 Iruma Nishiki

42 Fukuhibiki 85 Shinshuu

43 Okabo

4 Cesium Accumulation in Paddy Field Rice Grown in Fukushima from 2011 to 201. . . 35
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4th, and October 18th. The radioactive Cs concentrations in harvested rice straw

and brown rice were independently determined. The 134Cs and 137Cs concentrations

in the straw were 19.4–73.4 and 10.3–100.3 Bq kg�1, respectively (Table 4.2). In

addition, the mean concentrations were 38.9 and 39.0 Bq kg�1, respectively, and

the medians were 35.8 and 35.5 Bq kg�1, respectively (Table 4.2). In brown rice,

the 134Cs and 137Cs concentrations were 0.7–20.3 Bq kg�1 and 2.7–26.6 Bq kg�1,

respectively (Table 4.2). The means were 8.1 and 11.6 Bq kg�1, respectively, and

the medians were 6.7 and 10.2 Bq kg�1, respectively (Table 4.2). Both the straw

and brown rice from the selected rice cultivars showed a large variation in radio-

active Cs concentration. This variation can be used to isolate either Cs uptake or

transport-related factors.

Next, we correlated the Cs concentration between straw and brown rice among

the 85 rice cultivars. Both 134Cs and 137Cs concentrations correlated significantly

and positively between straw and brown rice (Fig. 4.1), that are p¼ 1.2� 10�6 and
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p¼ 4.9� 10�7 for 134Cs and 137Cs, respectively (Fig. 4.1). The coefficients of

determination (R2) were 0.33 and 0.35 for 134Cs and 137Cs, respectively. Thus,

we concluded that the Cs concentrations in brown rice might be estimated from the

Cs concentrations in straw, although there were some exceptions.

4.2.2 Radioactive Cesium Accumulation Among 15 Selected

Rice Cultivars Grown in a Fukushima Paddy Field

in 2012 and 2013

On the basis of the Cs concentration of brown rice in 2011, we selected 15 rice

cultivars to test the reproducibility of Cs uptake, and planted them at a Fukushima

paddy field in 2012 and 2013. Khau Mac Kho, Asominori, Kaneko, and Deng Pao

Zhai were selected as high Cs accumulating cultivars; whereas, Kasalath,

Hamasari, Kameji, Aichiasahi, Wataribune, Mansaku, Akage, and Hassokuho

were selected as low Cs accumulating cultivars. In addition, Koshihikari,

Nipponbare, and Taichung 65 were selected as typical Japanese cultivars. In

2012, we planted the selected 15 rice cultivars at a Fukushima paddy field on

May 23rd, and sampled them on October 13. In 2013, the planting and harvesting

dates were May 14th and October 10th, respectively. Khau Mac Kho, Asominori,

and Deng Pao Zhai showed relatively higher concentrations of 137Cs in brown rice

among different rice cultivars (Fig. 4.2). On the other hand, Hamasari, Aichiasahi,

and Mansaku showed relatively lower 137Cs concentrations in brown rice compared

with the other cultivars (Fig. 4.2). These results were comparatively conserved in

3-year investigations.

Our results significantly provide data for Cs accumulation levels among different

rice cultivars in a Fukushima paddy field. A molecular genetic approach to rice

cultivars with different Cs accumulation may enable identification of genes that

regulate Cs uptake and transportation in rice.

4.3 Fertilizer Effects on Cs Accumulation in Rice

4.3.1 General Information of Fertilizer Effects on Cs

Accumulation in Plants

Both K and Cs are alkali metals, and Cs transportation is known to be mediated by

several K transporters (Qi et al. 2008; Jabnoune et al. 2009). Thus, Cs uptake and

transportation by K transporters compete with K uptake and transportation in

plants. It has been reported that Cs uptake is enhanced under low K conditions in

various plant species (Shaw 1993). K fertilizer applications can reduce Cs absorp-

tion in crops such as wheat, barley, rye, and potato under K deficient conditions

38 Y. Ohmori et al.



(Lemmbrechts 1993). On the other hand, fertilizer application has little effect on Cs

absorption under adequate K conditions.

Ammonium (NH4
+) is known to affect the elution of Cs from soil by replacing

NH4
+ with Cs+. Therefore, high concentrations of NH4

+ in the soil enhance Cs+

elution, resulting in the promotion of Cs+ absorption by plants. It has been reported

that the application of nitrogen fertilizer enhances Cs uptake by plants in the field,

although the degree of this effect depends on the soil type and other conditions

(Lemmbrechts 1993; Smolders et al. 1997).

Before March 11, 2011, studies on radioactive Cs accumulation had been mainly

conducted at the site of the Chernobyl Nuclear Power Plant accident in Russia.
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Fig. 4.2 Comparison of
137Cs concentrations among

2011–2013 data in straw

and brown rice. (a) 137Cs

concentrations (Bq kg�1) in

straw from selected

cultivars. (b) 137Cs
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green boxes indicate 2011,
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Therefore, the behavior of radioactive Cs affected by fertilizers in paddy fields and

andosols, which are the common field condition and soil-type in Japan, were not

well elucidated. Thus, it is important to investigate the effects of K and N fertilizer

on radioactive Cs absorption in rice grown in Japanese paddy fields.

In the next chapter, we will describe radioactive Cs concentrations in rice grown

in paddy fields under four different fertilizer conditions at Ishidairayama,

Yamakiya, Kawamata-cho in Fukushima in 2011 and 2012.

4.3.2 Radioactive Cs Concentrations in Rice Grown in Paddy

Fields Under Four Different Fertilizer Conditions at

Fukushima

To investigate the effect of fertilizer applications on radioactive Cs concentrations

in rice, we cultured two commercial rice cultivars, Koshihikari and Hitomebore, in

2011 and 2012 under four different fertilizer conditions: normal,�K,�K+ 2N, and

no fertilizer. Under normal condition, a commercial fertilizer containing 8:18:16

(N:P:K; equivalent to 6, 9, and 8 kg per 10 a) was applied as a basal fertilizer. Under

K-depleted conditions, N and P were given as urea and monocalcium phosphate,

respectively. Under�K condition, N, P, and K were given as 6, 9, and 0 kg per 10 a,

respectively. Under�K+2N condition, N, P, and K were given as 12, 9 and 0 kg

per 10 a, respectively. Under no fertilizer condition, no fertilizers were applied.

4.3.2.1 Radioactive Cs Concentration in Rice Straw Grown in a Paddy
Field at Kawamata-cho

To assess the effect of fertilizer conditions on radioactive Cs concentrations in rice,

we determined the radioactive Cs (134Cs and/or 137Cs) concentrations in straw

harvested at the ripening stage.

In 2011, the 134Cs concentration in straw under the�K+2N condition was 1.5

times higher than that under the normal condition (Fig. 4.3a). The 134Cs concen-

trations in straw were also high under the �K condition compared to those under

the normal condition (Fig. 4.3a). On the other hand, there was no difference in the
134Cs concentrations in straw under the normal and no fertilizer conditions. Similar

trends were also observed for the 137Cs concentrations (Fig. 4.3b).

In 2012, we replanted Koshihikari and Hitomebore at the same paddy field and

investigated the reproducibility of the 137Cs concentrations in the straw. The 137Cs

concentrations in the straw were highest under the �K+ 2N condition (Fig. 4.3c).

The 137Cs concentrations in straw were also high under the �K condition

(Fig. 4.3c). Under the no fertilizer condition, the 137Cs concentrations in straw

were similar to those under the normal fertilizer condition. All patterns of

40 Y. Ohmori et al.



radioactive Cs concentrations in rice straw were similar between Koshihikari and

Hitomebore in 2011 and 2012 (Fig. 4.3).

4.3.2.2 Radioactive Cs Concentrations in Brown Rice Grown
in a Paddy Field at Kawamata-cho

We determined the radioactive Cs concentrations in brown rice grown at

Kawamata-cho in 2011 and 2012. In 2011, the trends for radioactive Cs accumu-

lation in brown rice were very similar between 134Cs and 137Cs (Fig. 4.4a, b). The

radioactive Cs concentrations in brown rice were highest under the �K+2N

condition, being about twice that under the normal condition. Under the �K

condition, the radioactive Cs concentrations in brown rice were also higher than

those under the normal condition in Koshihikari (Fig. 4.4a, b). The radioactive Cs

concentrations in brown rice were the lowest under the no fertilizer condition.

In 2012, the trends of 137Cs accumulation in brown rice under the four different

fertilizer conditions were very similar to those observed in 2011 (Fig. 4.4).

The137Cs concentrations in brown rice were highest under the �K+ 2N condition,

and lowest under the no fertilizer condition both in 2011 and 2012 (Fig. 4.4b, c).
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However, in contrast to the results of 2011, the 137Cs accumulation in brown rice

under the �K condition in 2012 was no different to that under the normal condition

(Fig. 4.4c).

In our study, low K conditions tended to increase the radioactive Cs concentra-

tions both in straw and brown rice grown in the contaminated paddy field at

Kawamata-cho in Fukushima. This result may be caused by chemical competition

between K and Cs. In addition, it is noteworthy that nitrogen fertilizer affects

radioactive Cs concentrations in rice. The fertilizer condition that caused the

highest radioactive Cs concentration in rice was �K+ 2N in both 2011 and 2012.

This result suggests that not only K fertilizer, but also N fertilizer affects radioac-

tive Cs concentrations in rice grown in a Japanese paddy field.

The mechanism that increases radioactive Cs concentrations in rice by N fertil-

izer application is still unknown. One hypothesis is that N fertilizers elute radioac-

tive Cs from the soil surface and enhance the radioactive Cs uptake by rice. To

avoid unexpectedly high-levels of radioactive Cs in rice (over 100 Bq kg�1; the

governmental new safety standards for radioactive Cs in food products in Japan),

we may need to implement the N and K fertilizer conditions.
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Chapter 5

Physiological Verification of the Effect
of Potassium Supply on the Reduction
of Radiocesium Content in Rice Grain

Natsuko I. Kobayashi

Abstract To achieve the reduction of the radiocesium content in rice grain, the

application of potassium (K) fertilizer to the paddy field is currently recommended.

However, physiological basis of the effect of the K addition on the radiocesium

accumulation in rice has not been enough provided. Here, the uptake and the

distribution of cesium (Cs) in rice plant grown in either K-deficient or

K-sufficient hydroponic medium containing 137Cs are presented aiming to describe

the exact impact of K fertilization on the Cs behavior within the plant. In the

K-deficient plant, the amount of 137Cs accumulated in the rice grain was 10 times as

much as the K-sufficient rice. The determination of 137Cs content as well as other

cationic ions in each part of the rice showed the intensive transport of 137Cs to the

ear part composed of brown rice, husk and culm, in which K was also accumulated.

It could supposed that Cs transport is regulated basically similarly to the K transport

within the plant body. Then, K fertilization is suggested to reduce the Cs content in

rice grain efficiently through the reduction of Cs uptake in the roots and Cs

accumulation to the ear part.

Keywords Oryza sativa • Paddy field • Potassium fertilization • Tracer • Uptake •

Transport

5.1 Introduction

Among agricultural products, rice contaminated with radiocesium has received

particular attention because it is the staple food of Japan and the main agriproduct

in Fukushima. After 2011, an extensive survey on rice was conducted and the result

showed a clear inverse relationship between soil potassium (K) and radiocesium

concentrations (http://www.maff.go.jp/j/kanbo/joho/saigai/pdf/kome.pdf). In addi-

tion, when the K fertilizer was applied to paddy fields where rice containing
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relatively high amounts of radiocesium was produced, the brown rice produced the

following year had much lower radiocesium concentrations. Actually, many previ-

ous physiological experiments have indicated that high K concentration in the

rhizosphere could reduce Cs absorption by the roots in several plant species (Zhi

et al. 2002; Robison et al. 2009). This reduction was thought to be due to the similar

chemical properties of K and Cs. Because they are both alkali metals, Cs is assumed

to enter the root cells through the K transport apparatus, which is where the

competition between these elements is thought to occur.

The competition between K uptake and Cs uptake in rice roots is recently

described (Kobayashi et al. 2015). The kinetics of K uptake was directly analyzed

using 42K, and simultaneously, the uptake rate of Cs was calculated using 137Cs. As

the K concentration in the uptake medium increased, the K uptake rate increased

and the Cs uptake rate decreased (Kobayashi et al. 2015). In Arabidopsis plants, the

molecule mediating K and Cs uptake has been identified (Qi et al. 2008).

In addition to the relationship between soil K concentration and radiocesium

contamination of rice, an intriguing observation about radiocesium distribution in

rice plants was found in 2011. In some paddy fields in Fukushima, brown rice

containing over 500 Bq/kg of radiocesium was produced. We analyzed radiocesium

distribution in rice seedlings harvested in those paddy fields (Paddy-field A) and

found that younger organs, such as the ear and the first and second internodes,

accumulated more radiocesium (Fig. 5.1). The leaf with the highest radiocesium

concentration was the uppermost leaf (Fig. 5.1). In contrast, the older leaves

contained larger amounts of radiocesium for rice plants harvested in the paddy

field (Paddy field B) where brown rice without radiocesium contamination (<4 Bq/

kg) was produced (Fig. 5.1). Given that the soil K concentration in Paddy-field A

was low, radiocesium accumulation in the younger parts could be considered to be

triggered by K deficiency. There is frequent K movement between plant parts.

When the plant encounters K shortage, K can be translocated from the older tissues

to the younger tissues to maintain growth. These K movements inside the plant

could be assumed to be mimicked by Cs; thus, Cs as well as K might accumulate in

younger tissues in response to K deficiency. To produce rice with the least

radiocesium content in paddy fields, it is important to understand the radiocesium

distribution in rice plants and to distinguish the influencing factors. Therefore, apart

from environmental factors, we investigated the physiological effect of K supply on

Cs uptake and transport in rice plants using 137Cs.

5.2 Effect of K Concentration in Nutrient Solution on Cs
Distribution in Rice Plants

To analyze the effect of K supply on 137Cs behavior, we compared 137Cs distribu-

tion in rice plants grown with or without K. Rice seedlings (Oryza sativa

L. Nipponbare) were grown in half-strength Kimura B nutrient solution for
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Fig. 5.1 Radiocesium distribution in rice plants harvested in Fukushima in 2011. The upper

picture shows the rice plant harvested in paddy-field A where the highly contaminated rice grain

(approximately 500 Bq/kg) was produced. The rice plant was separated into organs and placed

with clods of paddy-soil and some reference samples (surrounded with frames). Radioactivity was

detected using an imaging plate (BAS IP MS, FujiFilm) and was described with a false color.

Arrows indicate the internodes. The bottom graph shows the concentration of 137Cs in the leaves of

the rice plants harvested from Paddy-field A and B [Modified from the report by Tanoi

et al. (2013)]
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3 weeks and then transplanted either to 3 mM K or K-free nutrient solution

containing 137Cs (9 kBq/L). The K-sufficient and K-deficient rice plants were

grown for another 8 weeks until maturity. For cultivation, a plant growth chamber

was set at 30 �Cwith a daily 12 h light and 12 h dark cycle. After harvesting, the rice

plants were separated into several parts and the radioactivity of 137Cs in each part

was measured to determine the 137Cs distribution. The K-deficient rice contained

nearly 3-times the amount of 137Cs compared with the K-sufficient rice. As

presented in Fig. 5.2, it was clear that the K-sufficient rice accumulated 137Cs in

the older leaves, whereas the K-deficient rice contained a large amount of 137Cs in

the ear and the culm, followed by the upper leaves. Therefore, the distribution of
137Cs in the K-deficient rice (Fig. 5.2) was similar to the radiocesium distribution

found in the rice grown in Paddy-field A (Fig. 5.1). In K-deficient rice, the 137Cs

accumulated in the ear accounted for more than 25 % of 137Cs found in the shoots,

whereas it was less than 10 % in the K-sufficient rice (Fig. 5.2). As a result, K

concentration in the culture solution was shown to impact significantly on Cs

distribution within a rice plant.

5.3 Cation Concentration in K-Sufficient and K-Deficient
Rice Plants

Does K concentration in solution alter the Cs distribution specifically? This ques-

tion is important for considering the mechanism regulating Cs transport inside rice

plants. Therefore, we investigated the distribution of sodium (Na), magnesium

(Mg), calcium (Ca), as well as K and 137Cs in K-sufficient and K-deficient rice

plants (Fig. 5.3). The concentration of K in the leaves was higher than in the brown

rice when K was sufficient, which was the reversed response to K-starvation.

Interestingly, this alteration was also observed for 137Cs concentrations. K concen-

tration in the sink organs, such as brown rice, husk, and culm, was not altered by K

deficiency and the order of concentration was brown rice < husk < culm in both

K-sufficient and K-deficient rice plants (Fig. 5.3). K was found to be actively

transported from the leaves to the reproductive organs to maintain their K concen-

tration, even if K was not supplied. The concentration of 137Cs was in the order of

brown rice < husk < culm in both K-sufficient and K-deficient rice plants, which

was very similar to the order of K concentration, and the 137Cs concentration in

these reproductive organs co-increased in response to K shortage (Fig. 5.3). Less

drastically, K-starvation was shown to cause an increase in Mg concentration and a

decrease in Ca concentration, although the distribution of Mg and Ca among organs

was not largely modified (Fig. 5.3). On the other hand, Na accumulation in the

leaves was promoted drastically under K deficiency. Previous reports suggested that

the additional Na accumulated in the K deficient leaves could compensate for some

function of K, and this could be one reason why Na absorption was activated under

K deficiency (Rodriguez-Navarro 2000). However, unlike K and 137Cs, Na
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Fig. 5.2 The distribution of 137Cs radioactivity among tissues at harvest. Rice seedlings hydro-

ponically grown with K (3 mM, K-sufficient) or without K (0 mM, K-deficient) were harvested and

separated into tissues to determine the 137Cs content using an imaging plate. 137Cs of 9 kBq/L was

supplied from 3 weeks after germination until harvest. In the top images, 137Cs radioactivity in

each tissue was presented in the gray-scale. In K-deficient rice, upper leaves accumulated larger

amounts of 137Cs compared to the lower leaves. The bottom graph presents the distribution of
137Cs between the ear and the straw [Modified from Kobayashi and Nobori (2014)]
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concentration in the brown rice and husk remained lower than that in the leaves.

These observations indicate that the mechanism regulating Cs allocation in rice

plants is closely related to the K transport mechanism.

5.4 The Period for Cs Uptake

Given the effect of K supply on the reduction of Cs uptake into the root and Cs

transport in brown rice plants, the application of K fertilizer in paddy fields is

suggested as an effective measure to reduce the radiocesium content in rice.

Fig. 5.3 Concentration of K, 137Cs, Mg, Ca, and Na in each tissue of K-sufficient (white bar) and

K-deficient (black bar) rice plants at harvest. To measure K, Mg, Ca, and Na, the tissues were

digested with nitric acid and analyzed using ICP-OES (Optima 7300, PerkinElmer). The concen-

tration of 137Cs was determined using gamma counting [Modified from Kobayashi and Nobori

(2014)]
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Subsequently, to develop a practical K fertilization scheme, it is important to

determine the developmental period when rice plants absorb Cs and transport it

toward the grain. Therefore, we compared the 137Cs amount in the ear of rice plants

supplied with 137Cs after the third week until harvest with that of rice plants to

which 137Cs was supplied only after heading. The disparity between them could

correspond to the 137Cs amount absorbed before heading. The results showed that

over 90 % of 137Cs accumulated in the ear at harvest was absorbed before heading

(Fig. 5.4). This means that most of the 137Cs found in the ear was once stored in

other parts, such as the leaves, and then relocated to the ear after heading. Further-

more, the amount of 137Cs relocated to the ear after heading was increased nearly

tenfold in response to K deficiency. Considering that the relocation of Cs from the

leaves to the ear can accompany K movement, which could be modified depending

on the level of K supply, it is possible that K supplement after heading can reduce

Cs transport toward the ear. Thus, we tested this idea by transplanting K-deficient

rice seedlings to the 3 mM K medium without 137Cs at heading.

5.5 Evaluation of the Effect of Additional K Fertilization
on Cs Movement

At harvest, the proportion of 137Cs content in the ear to the total 137Cs absorbed

before heading (the ear fraction) in the K-sufficient rice and K-deficient rice was

17.3 % and 27.8 %, respectively (Table 5.1). Then, the ear fraction in rice plants to

which K was supplied after heading was 25.0 % (Table 5.1). These results imply

that K fertilization after heading has only a minor effect on Cs relocation. Mean-

while, transition to the K-rich condition after heading is assumed to be effective for

reducing Cs uptake in roots. However, such a reduction is expected to have a

limited impact on Cs content in brown rice because the amount of Cs absorbed

Fig. 5.4 The 137Cs content

in ears of K-sufficient and

K-deficient rice at harvest

and the period of 137Cs

absorption. K-deficient rice

accumulated 10-times more
137Cs in the ear as

K-sufficient rice. Over 90 %

of the 137Cs in the ear at

harvest, was absorbed

before heading, and was

probably relocated from the

leaves to the ear as the ear

matured, regardless of the K

condition [Modified from

Kobayashi and Nobori

(2014)]
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after heading accounts for less than 10 % of the Cs content in the ear part at harvest

(Fig. 5.4). Therefore, in consideration of plant physiology, the importance of a

base-fertilizer, rather than additional fertilization, was demonstrated to reduce

radiocesium contamination in rice.

5.6 Conclusion and Future Perspectives

The supply of K to rice plants decreased the Cs content in brown rice as a

consequence of reduction of both Cs uptake by the root and Cs transport toward

the edible part. Application of K fertilizer to some paddy fields in Fukushima

apparently reduced the radiocesium concentration in brown rice, and the ear

fraction of radiocesium content was decreased by half (unpublished data). Finally,

in the autumn of 2014, all the brown rice commercially produced passed the test for

sale. To keep the radiocesium contamination low, it could be important to maintain

an appropriate K condition in rice plants. Regarding the determination of the K

condition in plants, analyzing the radiocesium distribution among tissues, as well as

the K concentration in the soil, is thought to improve the accuracy. If radiocesium

concentration is lower in younger tissues than older tissues, the plant is considered

to have enough K and thus additional K fertilization would have only minor benefits

through the absorption competition as previously reported (Kobayashi et al. 2015).

In these cases, some other factors influencing radiocesium behavior should be

evaluated to reduce the radiocesium contamination.

In this study, we focused on the similarity of behavior between Kþ and Csþ.

However, their behavior is close but not the same. The ratio of K uptake rate to Cs

uptake rate was found to be 7–11 times higher than the ratio of K concentration to

Cs concentration in the culture medium, indicating that the root absorbs K selec-

tively over Cs (Kobayashi et al. 2015). In addition, K was shown to be selectively

relocated to the rice grain over Cs (Nobori et al. 2014). Characterization of the

molecular machinery regulating the movement of K and Cs can further assist our

Table 5.1 Influence of K supply on 137Cs transport to the ear after heading

K- condition

Distribution to the ear (%)Before heading After heading

Sufficient Sufficient 17.3

Deficient Deficient 27.8

Deficient Sufficient 25.0

137Cs was added to the solution medium only before heading, and its distribution at harvest was

determined. Rice plants grown under K sufficient conditions both before and after heading

accumulated 17.3 % of 137Cs in the ear. The percentage increased to 27.8 % in rice plants

grown under K deficient conditions. Then, rice plants grown under K-deficient conditions until

heading and then transplanted into K-sufficient solution relocated 25.0 % of 137Cs to the ear

[Modified from Kobayashi and Nobori (2014)]
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understanding of Cs behavior in plants and assist breeding of low-Cs cultivars,

which can assure the stable production of agricultural products in the future.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 6

Consecutive Field Trials of Rice Cultivation
in Partially Decontaminated Paddy Fields
to Reduce Radiocesium Absorption
in the Iitate Village in Fukushima Prefecture

Ichio Ii and Keitaro Tanoi

Abstract We performed consecutive field trials of rice cultivation to reduce

radiocesium (134Cs and 137Cs) absorption by rice in a partially decontaminated

paddy soil in the Iitate Village in Fukushima prefecture, Japan. People had evac-

uated this area because of the high levels of radioactive contamination caused by

the nuclear disaster in 2011 at the Fukushima Daiichi Nuclear Power Station,

Tokyo Electric Power. The radiocesium concentrations were measured for paddy

soil and for lowland rice grown on variously decontaminated paddy soil in 2012 and

2013. The results show that the radiocesium concentration in the brown rice

cultured in the fields of Sasu and Maeda with 2000–6000 Bq/kg dry weight

(0–15 cm average soil depth) was below 40 Bq/kg, which is below the Japanese

new standard for food (100 Bq/kg). In addition, the radiocesium concentration in

the brown rice depended on the decontamination level of the paddy soil. In addition,

the radiocesium concentration in the rice was reduced depending on the exchange-

able K content of the soil, which plateaued around 20 mg K2O per 100 g dry soil.

However, in 2013, in a test field of Komiya where the radiocesium concentrations

were higher than 8000 Bq/kg dry weight, brown rice with more than 100 Bq/kg was

harvested, indicating the need for further decontamination. Overall, our results

show that decontamination and additional K fertilization can reduce the

radiocesium concentration in rice to less than the new standard, and that we could

resume rice cultivation in the Iitate village by rather practical way.
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Daiichi nuclear accident • Cesium134 • Cesium137
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6.1 Introduction

Rice is the most important crop in Japan. The Fukushima Daiichi nuclear accident

in March 2011 caused radioactive material to spread out and down onto farm lands

from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power, partic-

ularly in Fukushima prefecture. In the Iitate Village, Fukushima prefecture, people

are still prohibited to live at home and to cultivate rice on their farms. It is an

important issue for them to judge whether they can resume rice cultivation in the

village within the next few years. Radiocesium (134Cs and 137Cs) is assumed to be

the radioactive material of most concern at present, considering the quantity

released and its half-life. In 1997, Tsukada et al. (2002, 2005) performed experi-

mental cultivation of rice in the Rokkasyo Village in Aomori prefecture and

measured 137Cs in the soil and in rice parts. The 137Cs level for the dry soil was

4.4 Bq/kg and the most was assumed to have derived from the many atmospheric

atomic bomb experiments performed during the 1950s and 1960s. They reported

that the 137Cs radioactivity in dry white rice was 0.0048 Bq/kg. From these values,

the transfer factor of 137Cs for white rice from soil was calculated to be 0.0011.

Uchida and Tagami (2007) reported the transfer factors of 137Cs for brown rice

cultivated in all of Japan to be 0.003–0.06 before the Fukushima disaster in 2011.

After the disaster, Ohmori et al. (2014) examined the effect of fertilization on the

radiocesium concentration in rice grown in a paddy field in Kawamata-cho in

Fukushima prefecture, and they revealed that excess N and K deficiency increased

radiocesium accumulation in rice from the soil. Nobori et al. (2014) investigated the

effect of K on the behavior of 137Cs in hydroponically cultured rice plants and

showed the importance of maintaining an appropriate K concentration before ear

emergence to avoid 137Cs contamination of the rice grains. In addition, in the

confirmatory fieldwork, the Ministry of Agriculture, Forestry and Fisheries

(MAFF 2012) reported that the radiocesium concentrations of brown rice cultivated

in decontaminated paddy soils (Komiya and Kusanomukaioshi districts in the Iitate

Village) were below 13 Bq/kg, but their relationship to the radiocesium concentra-

tions in the soil was not clarified. Furthermore, the Fukushima prefecture agency

and MAFF (in January 2013) and MAFF et al. (in March 2014) investigated the

relationships between the radiocesium concentrations in brown rice and soil and the

exchangeable K concentration in the soil and showed that the radiocesium concen-

trations in brown rice are negatively related to the concentrations of exchangeable

K in soil. However, they also concluded that no clear relationship was observed

between the radiocesium concentrations in brown rice and those of the soils where

the rice was cultivated. Thus, we investigated the relationship between the

radiocesium concentrations in the soil and in brown rice grown in variously

decontaminated soils in test fields with and without K addition.

The approved specified NPO “Resurrection of Fukushima” (ROF; www.

fukushima-saisei.jp/) is a volunteer organization that aims to rebuild lives and

reconstruct agriculture-centered industries that have been affected by the nuclear

power plant accident. The activities started by focusing on the Iitate Village in 2011
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in collaboration with the villagers (Fig. 6.1) and with assistance from the Graduate

School of Agricultural and Life Sciences, University of Tokyo. The collaboration

was facilitated by letter exchanges between the village head and the director of the

faculty. One of the most important activities was that we annually cultivated rice in

2012, 2013, and 2014 in the Iitate Village, focusing on radiocesium in brown rice in

relation to the level of decontamination of soil cultivated, with or without the

addition of KCl fertilizer.

6.2 Experimental Rice Cultivation Procedures in 2012

Figure 6.2 shows diagrams and pictures of the test fields in the Iitate Village in

2012: (a) Sasu test fields (N37�440, E140�430) in Sasu district and (b) Maeda test

fields (N37�430, E140�400) in Maeda district. The Sasu test fields were partially

decontaminated in April 2012 by irrigating a paddy field with water to approxi-

mately 5-cm depth with rotary weeding tools, and the muddy water was then swept

out (Mizoguchi 2013, Resurrection of Fukushima 2012).

The Sasu test fields were divided into fields A, B, C1, C2, and D, depending on

the extent of decontamination. Each test field was divided into N (without addi-

tional KCl fertilizer) and K (with additional KCl fertilizer). The decontamination

treatments were performed as follows:

Fig. 6.1 The first visit to Iitate Village by volunteers in June 2011. A picture of Mr. Muneo Kanno

with the visitors in front of his house in Sasu against the background of his bull barn and a stream.

This visit provided the momentum to establish NPO “Resurrection of Fukushima” to work with

villagers in the Iitate Village
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A: Three cycles of shallow irrigation with rotary weeding tools and then

drainage with a tennis court brush (0.5 acres)

B: One cycle of shallow irrigation with rotary weeding tools and then drainage

with a tennis court brush (3.3 acres)

C1: Two cycles of shallow irrigation with a rotary weeding machine and then

natural drainage (1.6 acres)

C2: One cycle of shallow irrigation with a rotary weeding machine and then

natural drainage (5.2 acres)

D: No shallow irrigation (1.4 acres).

The Maeda test fields were divided into IA, IB, and IC with plowing and

irrigating an approximately 15-cm depth soil.

Rice seedlings of Akitakomachi were planted in Sasu and Maeda fields as shown

in Fig. 6.2. Before planting, basal fertilizer (12N:18P:16K:4Mg; weight % as N,

P2O5, K2O, and MgO) was mixed with the plowed soil at 40 kg per 10 acres in Sasu

test fields. In Maeda test fields, basal fertilizer (10N:8P:8K:2Mg) was mixed with

the plowed soil at 40 kg per 10 acres. The K fertilizer was added as KCl (20 kg per

Fig. 6.2 The test fields of Sasu (a) and Maeda (b) in 2012 (Ii et al. 2015). (a) Left: diagram of test

fields of Sasu. Right: picture of Sasu test fields just after the rice planting in June 2012. (b) Left:
diagram of test fields of Maeda. Right: picture of Maeda test fields while rice planting in June 2012
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10 acres) to K test fields with the basal fertilizer in Sasu. No KCl fertilizer was

added to the Maeda test fields. No fertilizer was added after planting the rice.

Water was introduced to the test fields from a brook; the bottom water was

blocked from entering. On rainy days, water was blocked from entering the Sasu

test fields. For the Maeda test fields, bags of absorbent (Zeolite) were set at water

entry points. The herbicide Sornet (Syngenta) was applied 1 week after rice

planting. Electric nets were set to protect the fields from boar and monkey damage.

Rice was harvested in mid-October in 2012. Figure 6.3 shows the test fields of Sasu

(a) and Maeda(b) in October.

Fig. 6.3 (a) Sasu test fields with the sign in Japanese showing the rice cultivation trial on going by
ROF. (b)Maeda test field at the mature stage in October 2012

6 Consecutive Field Trials of Rice Cultivation in Partially Decontaminated. . . 59



Rice sampling was performed at the dough stage on September 15–16 and at the

mature stage on October 6–7. Following a five-point sampling procedure, five

sampling points were assigned to each test field, and 10–20 sheaves of rice plant

were then cut and collected (Fig. 6.4a). The bundles of rice were dried indoors for

more than 1 week, and then the rice bundles from each test point were collected and

threshed with an old-fashioned thresher (Fig. 6.4b) to give one unhulled rice sample

for each test field. The unhulled rice was sent to “Circle Madei”(Fig. 6.5), a

volunteer employee and student group at Tokyo University that collaborates with

Fig. 6.4 (a) Sampling of sheaves of rice plants in test fields in Sasu in October 2012. (b)
Threshing of rice bundles with an old-fashioned thresher to give unhulled rice in November 2012
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Fig. 6.5 (a) The poster of “Circle Madei” on the front of the circle room in the Graduate School of

Agricultural and Life Sciences, University of Tokyo, showing its motivation in Japanese to support

Iitate villagers to reconstruct their “Madei” life. “Madei” means polite, earnest, and steady, even if
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ROF to prepare samples for radioisotope measurement. The brown rice was pre-

pared from the unhulled rice, using a hulling machine (Fig. 6.6a) and white rice and

rice bran were prepared from the brown rice, using a rice polisher (Fig. 6.6b). The

Fig. 6.5 (continued) it may be slow (in dialect in Iitate Village, where they advocate “Madei” life).

(b) Members of “Circle Madei”, showing soil sample preparation No. 1000 in March 2013, since

the start of November 2012. The number of samples reaching 10,000 in June 2015

Fig. 6.6 (a) Hulling process of unhulled rice to give brown rice, being performed at “Circle

Madei”. (b) Polishing process of brown rice to give white rice and rice bran, being performed at

“Circle Madei”
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radiocesium measurements were performed at the Radioisotope Center, using a Ge

semiconductor detector (GEM and GMX type; Seiko EG&G) for rice samples in

250 ml containers, and a NaI (Tl) Scintillation counter (2480WIZARD2

Autoγcounter; Perkin Elmer) for soil samples in 20 ml vials (Nobori et al. 2013).

The value of the soil was corrected per dry weight by measuring the soil weight

after drying the soil at 60 �C for more than 6 days.

6.3 Results of Experimental Cultivation in 2012

6.3.1 Radiocesium Concentrations of Brown Rice and Soil

Figure 6.7 shows pictures of brown rice grains prepared at the dough stage and at

the mature stage. Grains from the mature stage look browner than those from the

dough stage. Figure 6.8 shows the radiocesium concentration of brown rice sampled

from each test field at the dough stage and at the mature stage, respectively.

Figure 6.9 shows the radiocesium concentration of soil (0–15 cm average depth)

for each test field. The radiocesium transfer factor for each stage at each test field is

shown in Fig. 6.10 and was calculated from the data presented in Figs. 6.8 and 6.9.

The brown rice measurements show that the radiocesium concentration from either

stage was less than 40 Bq/kg. In the KCl fertilized fields (AK, BK, C1K, C2K, and

DK), the concentrations were below 25 Bq/kg. The transfer factors for brown rice

were 0.002–0.008, whereas those in the KCl fertilized field were 0.002–0.003 at the

dough stage and 0.003–0.004 at the mature stage.

Fig. 6.7 Grains of brown rice prepared at the dough stage (upper) and at the mature stage (below)

of test field D (left) and DK (right) in Fig. 6.2
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Figure 6.11 shows the relationship between the radiocesium concentration in

brown rice at the mature stage and that of the soil cultivated in the test field of Sasu

for each group with KCl fertilizer (K) and with no KCl added (N). In both groups,

the radiocesium concentration of brown rice tended to increase as the radiocesium

concentration in the soil increased. A significant difference test of the correlation

coefficient shows a significant p-value (0.032) for a group with only basal fertilizer

added, but a non-significant p-value (0.057) for a group with KCl fertilizer added

(at the significant test level of 0.05). The inhibitory effect of KCl fertilizer on

radiocesium in brown rice was clear ( p¼ 0.026; t-test, n¼ 5). The radiocesium

concentration in brown rice at the mature stage was approximately 10 % higher than

that from the dough stage (Fig. 6.8). The reason for this is unknown.

R
a

d
io

c
e

s
iu

m
 i
n

 b
ro

w
n

 r
ic

e
 （

B
q
/k

g
)

Fig. 6.8 The concentration of radiocesium in brown rice cultivated in Sasu (A–DK) and Maeda

(IABC) in 2012 (Ii et al. 2015). Test fields are shown in Fig. 6.2
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Fig. 6.9 The concentration of radiocesium in the soil (15 cm average depth) in 2012 (Ii et al. 2015).

Test fields are shown in Fig. 6.2. The bar for IABC shows the SD of three soil samples (IA, IB, and

IC)

64 I. Ii and K. Tanoi



6.3.2 Analyses of Exchangeable Cations in Soil from the

Test Fields

The soils measured for radiocesium were also analyzed for exchangeable cations

using ICP-OES (Optima 7300DV) after extracting the dry soil with 1 M ammonium

acetate solution at room temperature for 24 h. The results are shown in Fig. 6.12.

The fields with added KCl (AK, BK, C1K, C2K, and DK) had higher exchangeable

K than the corresponding fields without KCl addition (A, B, C1, C2, and D),

respectively. However, there were significant differences between the test fields;

for example, the exchangeable K content of A was much higher than for B, C1,
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Fig. 6.10 The transfer factor of brown rice in 2012 calculated from the data shown in Figs. 6.8 and

6.9 (Ii et al. 2015). The test fields are shown in Fig. 6.2
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Fig. 6.11 The relationship of the radiocesium concentration between soil and brown rice culti-

vated in the test fields of Sasu in 2012 (Ii et al. 2015). The p-value between the two groups (K: with

KCl fertilizer; N: no KCl fertilizer) was 0.026 (t-test, n¼ 5)
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C2, and D. All measured cation contents in the test fields of Maeda were much

lower than those of Sasu. This is assumed to be because of the much higher sand

content in the Madea field soil (IA, IB, and IC). This is also considered to be one of

the causes of low rice yields in the Maeda test fields. Figure 6.13 shows the

relationship between the radiocesium concentration in brown rice at the mature

stage and exchangeable K in the soil in the Sasu test fields. A higher exchangeable

K resulted in a significantly lower radiocesium concentration in cultivated brown
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Fig. 6.13 Relationship of the radiocesium concentration in brown rice to exchangeable K in soil

in Sasu test fields in 2012 (Ii et al. 2015). Exchangeable K is expressed in mg of K2O per 100 g of

dry soil
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rice. The radiocesium concentration in brown rice was below 10 Bq/kg when the

exchangeable K content was higher than 20 mg/100 g dry soil (mg as K2O). This

indicates that maintaining exchangeable K content in soil higher than 20 mg/100 g

is extremely important for reducing the radiocesium concentration of cultivated

brown rice. This is consistent with the directive of National Agriculture and Food

Organization (NARO 2012). The transfer factor of radiocesium in brown rice to that

in soil was 0.003–0.004 when the exchangeable K content in soil was higher than

20 mg/100 g. This is consistent with the lower range of reported values by Uchida

and Tagami (2007).

6.3.3 Radiocesium Concentration in White Rice

and in Rice Bran

Figure 6.14 shows the radiocesium concentrations in white rice and in rice bran

prepared from the brown rice from each test field. The concentration in white rice was

below half the value of brown rice and all were lower than 10 Bq/kg. The radiocesium

concentrations in rice bran were more than double than that in brown rice. The values

in some fields (C2, D, and IABC) were higher than 100 Bq/kg, although others

harvested from partially decontaminated fields (A, B, and C1) and from KCl added

fields were below 100 Bq/kg (the new standard for food in April 2012).

Thus, the 2012 field trials suggest that rice cultivation in the Iitate Village is

feasible by reducing soil radiocesium by decontamination using shallow soil

mixing and drainage, and by addition of KCl together with basal fertilizer.
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Fig. 6.14 Radiocesium concentration in white rice (left column) and rice bran (right column)

harvested in each test field in 2012 (Ii et al. 2015). ND shows that both 134Cs and 137Cs are below

the detection limit. The height of each ND column shows the sum of the detection limits of 134Cs

and 137Cs
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6.4 Experimental Cultivation of Rice in 2013

In addition to Sasu and Maeda test fields in 2012, an experimental cultivation

was performed in Komiya test fields (N37�370, E140�460) in Komiya district

(Fig. 6.15a, b) and in “Sasu Madei” test fields located to the eastern side of the

Fig. 6.15 (a) Komiya test fields in 2013, with the sign in Japanese showing that test cultivation

was in progress. (b) Komiya test fields just after rice planting in August 2013. (c) “Sasu Madei”

test fields just after rice planting in 2013
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Sasu test fields in 2012 (Fig. 6.15c ). Table 6.1 shows a list of the test

fields, treatment methods, test field names, and whether KCl was added or not.

The straw harvested in 2012 (approximately 80 kg/acre) was plowed into some

of the test fields (WC and W) because straw contains high K and other

nutrients and is generally recycled into the soil after rice harvest to keep the soil

fertilized.

Rice cultivation at Sasu and Maeda was performed in a similar way to that in

2012, using Akitakomachi rice seedlings with some modifications. Briefly, basal

fertilizer 12N:18P:16K:4Mg (40 kg per 10 acres) was applied to all the test fields

and KCl (20 kg per 10 acres) was applied to the test fields affixed with K in early

June. Rice was planted in mid-June (Fig. 6.16) and then harvested in mid-October

(Fig. 6.17). In the Komiya test fields, basal fertilizer 12N:18P:16K:4Mg (40 kg

per 10 acres) was added in mid-May. Rice planting and KCl (20 kg per 10 acres)

addition to K affixed test fields was performed in late May. The rice was

harvested in early October. Rice sampling at the mature stage was performed

at Sasu and Maeda in mid-October and at Komiya in early October. Measure-

ments of radiocesium were performed the same way as those in 2012, except

that rice bran was measured using an NaI(Tl) scintillation counter with 20 ml

vials.

Table 6.1 Description of test paddy fields in 2013. N: K not added, K: KCl added (Ii et al. 2015)

Farm Decontamination method (year) Test field name

KCl

added or

not

Komiya Deep irrigation (ca.15 cm depth,
2013)

S3 3 cycles N, K

S1 1 cycle N, K

S0 0 cycle N, K

Maeda Deep irrigation (2012) N, K

Sasu Shallow irrigation (ca.5 cm
depth, 2012)

AB: A and a part of B in 2012 N, K

WC: a part of B and C1 in 2012

with straw plowed in the soil

N. K

CD: C2 and D in 2012 N, K

Sasu
Madei

Madei method (ca.5 cm depth of
surface soil removed, 2013)

W: Straw plowed in N, K

N: No straw plowed in N, K

T: Compost mixed in N, K

MK: KCl added with basal fertil-

izer (8 in June)

K

YK: KCl added during the panicle

formation stage (28 in July)

K

HK: KCl added during the heading

stage (16 in August)

K
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Fig. 6.16 (a) Maeda test field showing rice planting by members of ROF in June 2013. (b) Lunch
to celebrate rice planting at the field close to Sasu test field in June 2012. After rice planting, we

usually have dinner with sake (rice wine) to celebrate rice planting and pray for safe growth of rice

with good weather
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Fig. 6.17 (a) Havested rice hung for natural drying at Sasu in October 2013. (b) Lunch to

celebrate rice harvest at Sasu in October 2012. Rice harvest is a most important event in farmer

life in Japan
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6.5 Results of Experimental Cultivation in 2013

6.5.1 Radiocesium Concentrations of Brown Rice and Soil

Figure 6.18 shows the radiocesium concentrations of brown rice sampled at the

mature stage and Fig. 6.19 shows the radiocesium concentrations of soil (0–15 cm

average depth) for each test field. The radiocesium transfer factor for each test field

is shown in Fig. 6.20 and was calculated from the data in Figs. 6.18 and 6.19. Soil

sampling at Komiya was performed from N sections and K sections together. In the

test field of Maeda, soil sampling was not performed. In Komiya test fields, the

radiocesium concentrations in the soil were high. This is due to high radiocesium

concentrations before decontamination (around 14,000 Bq/kg dry soil measured in

May 2013) and because the decontamination method of deep irrigation was not as

effective as the shallow irrigation method performed at Sasu test fields in 2012.

Furthermore, the differences in the radiocesium concentrations between S0, S1, and
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Fig. 6.18 The concentration of radiocesium in brown rice in 2013 (Ii et al 2015). The last letter

“N” indicates the field “not KCl added” and the last letter “K” indicates the field “KCl added”.

Komiya: test fields of Komiya district (S3: decontaminated in 2013 by three cycles of mixing

surface soil of approximately 15-cm depth and drainage; S1: the same as S3 except by one cycle of

mixing; S0: the same as S3 except that there was no cycle of mixing). Maeda: test fields of Maeda

district. Sasu: Sasu test fields of Sasu district decontaminated by rotary weeding method of mixing

the surface soil to about 5-cm depth and drainage in 2012 (AB: A plus a part of B test field in 2012;

WC: A part of B plus C1 test field in 2012 and straw harvested in 2012 was mixed in the soil; CD:

C2 plus D in 2012). Sasumadei: Sasu test fields decontaminated by stripping approximately 5 cm

of surface soil in 2013 (WN: straw was mixed in the soil, no KCl added; WK: straw was mixed in

and KCl added; NN: no straw mixed in, no KCl added; NK: no straw mixed in, KCl added; TN:

compost was mixed in, no KCl added; TK: compost was mixed in, KCl added; MK: KCl added

with base fertilizer; YK: KCl added during the panicle formation stage; HK: KCl added during the

heading stage). ND shows that both 134Cs and 137Cs are below the detection limit. The height of the

ND columns show the sum of the detection limits of 134Cs and 137Cs
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S3 (Fig. 6.19) were less than the differences before planting the rice, which was

probably due to soil transfer between the test fields and influx of radiocesium from

the brook water (Nemoto and Abe 2013).

In the Sasu test fields, the radiocesium concentrations were 1500–4000 Bq/kg

and in a similar order to those in 2012 (Fig. 6.9; ABN, ABK<WBN,

WBK<CDN, CDK), although they were generally approximately 20 % lower

than in 2012. No significant increase in the radiocesium concentrations occurred

for the soil in the WBN and WBK treatments that contained the plowed straw

harvested in 2012.

In “Sasu Madei” test fields, the radiocesium concentrations of the soils were

200–600 Bq/kg, except for a test field of HK (southern corner field), showing that

Fig. 6.19 The concentration of radiocesium in dry soil (15-cm average depth) in 2013

(Ii et al. 2015). The columns and bars show average and SD, respectively, of values of five soil

points in each test field. Refer to Fig. 6.18 legend for details of the test fields
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Fig. 6.20 Transfer factor of brown rice in 2013 calculated using the data shown in Figs. 6.18 and

6.19 (Ii et al. 2015). Refer to the legend of Fig. 6.18 for details of the test fields
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the “Madei Method” of stripping co. 5 cm surface soil was effective at reducing the

radiocesium concentration.

The radiocesium concentration of brown rice from the test fields in Komiya

were 35–101 Bq/kg. The S3N and S3K fields showed lower values than the

corresponding fields S0N, S0K and S1N, S1K. Addition of KCl reduced

radiocesium accumulation in brown rice in S3 and S0, but not in S1. The reason

for high radiocesium concentrations in S1K is unclear. In the Maeda test fields,

there was a clear effect of added KCl (33–11 Bq/kg). In the fields of Sasu, ABN and

ABK had 4 Bq/kg and WCB had 12 Bq/kg, whereas WCK had 8 Bq/kg. The CDN

had 26 Bq/kg, whereas CDK had 9 Bq/kg. The reducing effect of KCl addition on

the radiocesium concentrations in brown rice was observed in five test fields,

excluding S1 in Komiya and AB. In “Sasu Madei”, all were below 7 Bq/kg.

The transfer factor for brown rice from Komiya and Sasu was 0.002–0.01

(Fig. 6.8). The reducing effect of KCl addition was clear, except for Komiya S1 field.

6.5.2 Radiocesium Concentrations of White Rice and Rice

Bran in 2013

Figure 6.21 shows the radiocesium concentrations in white rice and in rice bran

prepared from the brown rice from Komiya and Maeda. The radiocesium concen-

tration in white rice were approximately half of that of brown rice. White rice from
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Fig. 6.21 Radiocesium concentration in white rice (left column) and rice bran (right column)

harvested in each test field of Komiya and Maeda in 2013 (Ii et al. 2015). Refer to Fig. 6.18 legend

for details of the test fields. ND shows that both 134Cs and 137Cs are below the detection limit. The

height of the ND column shows the sum of the detection limits of 134Cs and 137Cs
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Komiya had 15–53 Bq/kg, whereas white rice fromMaeda had 15 Bq/kg in the field

without KCl addition (N) and 5 Bq/kg in the field with KCl addition (K). White rice

from CDN in Sasu was 10 Bq/kg, and white rice from the other test fields were

below the detection limit. Rice bran from Maeda and Sasu both had a maximum of

77 Bq/kg, which is below the new standard for food; however, rice bran from

Komiya exceeded this standard.

6.6 Conclusive Remarks

We performed field trials of rice cultivation in partially decontaminated paddy

fields in the Iitate Village in Fukushima prefecture in 2012, 2013, and 2014. The

results of 2012 and 2013 show that suitable decontamination and addition of KCl

can reduce the radiocesium concentrations in brown rice to values much lower than

the safety standard for food in Japan (100 Bq/kg). This trend is consistent with

results in 2014, which are not detailed here. The rice harvested in 2012 and 2013

was not for consumption because it was a trial, even though it satisfied the standard

levels. However, the members of ROF enjoyed eating the rice harvested at Sasu in

2014, after confirmation that the radiocesium concentration was below 25 Bq/kg

based on both our measurement of rice samples and the results from the Fukushima

prefecture screening test of all bags of brown rice harvested in 2014. The members

of ROF will continue to cultivate rice in the Iitate Village with the villagers to

rebuild lives and reconstruct agriculture-centered industries.
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Chapter 7

Effects of “Clean Feeding” Management
on Livestock Products Contaminated
with Radioactive Cesium Due
to the Fukushima Daiichi Nuclear Power
Plant Accident

Noboru Manabe, Tomotsugu Takahashi, Maiko Endo, Chunxiang Piao,
Junyou Li, Hiroshi Kokado, Minoru Ohta, Keitaro Tanoi,
and Tomoko M. Nakanishi

Abstract Contamination of food and animal products by radioactive cesium rep-

resents an important potential route of exposure in the human food chain. There-

fore, following the Fukushima Daiichi nuclear power plant accident, the

development of solutions for radiocesium contamination is a serious social issue

in Japan. Most farm animals are kept in closed barns in Japan; this reduced the

initial contamination of animal products by radioactive nuclides in the early phase

of the accident. Furthermore, pigs and chickens were given imported feed that was

not contaminated. However, more than 10 million tons of grass feed were needed

for herbivorous livestock in Japan. We report the effects of “clean feeding”

management on livestock products contaminated with radioactive cesium due to

the nuclear accident. The present results concerning products from herbivores

(horses, sheep, and cattle) revealed that radiocesium levels were undetectable in

the meat or milk of herbivores that fed on non-contaminated feed after an initial

period of consuming radiocesium-contaminated feed. Thus, we conclude that
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“clean feeding” management can play a crucial role in solving the social problem of

food contamination.

Keywords Cattle • Clean feeding • Feeding management • Herbivorous livestock •

Horses • Sheep • Radioactive cesium • The Fukushima Daiichi nuclear power plant

accident

7.1 Introduction

On March 11th, 2011, the Japanese Prime Minister declared that a nuclear disaster

occurred at Fukushima Daiichi nuclear power. This disaster resulted from an earth-

quake that occurred in Eastern Japan. The Japanese government subsequently issued

various correspondences, and on March 17, 2011, the Ministry of Health, Labor and

Welfare, Japan (MHLW) was notified of the handling of foods that were contami-

nated with radionuclides (hereafter referred to as radioactive cesium). They

established provisional radionuclides reference/regulation levels for food and drink-

ing water, under the guide of food sanitation law. Radioactive cesium levels (cesium-

137 and cesium-134) in drinking water, milk, and dairy products had to be less than

200 Bq/kg, while those in other foods, including cereals, vegetables, fruits, meat,

eggs, and fish had to be less than 500 Bq/kg. In response to the provisional reference/

regulation values, the Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF)

negotiated a rule that prevented food contamination by radionuclides. On April

14, 2011, the MAFF established regulations to reduce radioactive cesium contami-

nation in livestock and livestock products such as milk and meat. Radioactive cesium

levels in feed for dairy cattle, beef cattle, horses, pigs and chickens had to be less than

300 and feed for farmed fish had to be less than 100 Bq/kg. The provisional reference/

regulation values were subsequently evaluated from various angles, and radioactive

cesium levels in human food and drinking water were significantly revised. New

reference/regulation values were applied on April 1, 2012. Therefore, radioactive

cesium levels had to be maintained at less than 10 Bq/kg in drinking water, less than

50 Bq/kg in milk and infant foods, and less than 100 Bq/kg in other foods (such as

cereals, vegetables, fruits, meat, eggs, and fish). These reference/regulation values are

still applicable today. In response to such revisions, on February 3, 2012 the MAFF

also revised radioactive cesium levels in livestock feed and bedding, and fertilizers

such as compost used in crop production. However, these revised values were

considered insufficient to meet the new reference values for human foods. Therefore,

the MAFF established further revisions onMarch 23, 2012, which were referred to as

new tolerance values. With these new tolerance levels, radioactive cesium levels had

to be less than 100 Bq/kg in feeds for cattle and horse, 80 Bq/kg in pig feed, 160 Bq/

kg in chicken feed, and 40 Bq/kg feed for farmed fish. Moreover, radioactive cesium

levels in the litters of livestock and fertilizer containing compost had to be less than

400 Bq/kg.
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The reference/regulation values for human foods and tolerance values for animal

feeds were established immediately after the Fukushima Daiichi nuclear power

plant accident, and were based on overseas findings, not those in Japan. Farming

systems in Japan differ from those in overseas countries. Japanese people have

characteristic eating habit and farming systems; therefore, fundamental research

that reflects the reality of these Japanese styles needs to be considered when these

reference/regulation and tolerance values are revised.

After the nuclear power plant accident, researchers in Japan performed empirical

research using livestock under conditions that reflected feed management in Japan

in order to determine and subsequently alleviate radioactive cesium contamination

levels in agricultural areas. We investigated how the levels of radioactive cesium

migrated from feed to livestock and livestock products using farm animals under

conditions that reflected the realities of feeding management in Japan in an attempt

to maintain the health of the Japanese population. It is approximately 4 years since

the nuclear power plant accident, and many of our research activities are ongoing.

Although most of our findings are incomplete or are only provided as interim

reports, we hope that the results described herein will contribute to the reconstruc-

tion of the livestock industry after the Fukushima Daiichi nuclear power plant

accident.

7.2 Absorption and Accumulation of Radioactive Cesium
from Feed to Horse Meat and the Effect of “Clean
Feeding” Management

In mid-March, 2011, livestock feeds (such as grass and rice straw) were contami-

nated with radionuclides including radioactive cesium. Contamination occurred

over wide areas of Tohoku and Kanto, with a radius of approximately 200 km

from the Fukushima Daiichi nuclear power plant. However, the dynamics of

radioactive cesium from contaminated feeds to farm animals have not yet been

elucidated in detail. Radioactive cesium-contaminated horse meat was found in

November, 2012. Radioactive cesium (115.6 Bq/kg) was detected in horse meat

processed at a local slaughterhouse (Koriyama-city, Fukushima prefecture, Japan)

approximately 60 km from the nuclear power plant at a level that slightly exceeded

the new reference/regulation value (100 Bq/kg). Following this incident, we inves-

tigated the transition of radioactive cesium from feed to horse meat using contam-

inated grass haylage produced at an experimental ranch of the Animal Resource

Science Center, the University of Tokyo (Kasama, Japan) in the spring of 2011. The

fate of radioactive cesium in horse meat after initiating a diet of non-contaminated

grass haylage was assessed.
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7.2.1 Experimental Procedure

(A) Preparation of horse feed containing radioactive nuclides caused by the acci-

dent at the Fukushima Daiichi nuclear power plant: Grass (Italian ryegrass,

Lolium multiflorum Lam.) was seeded in October 2010 and was cultivated in a

grass field at the experimental ranch of the Animal Resource Science Center.

After mowing between the 10th and 15th of May, 2011 (2 months after the

accident), raw grass (radioactive iodine: undetectable levels, and radioactive

cesium: 113 Bq/kg) was dried for several days and then packed into plastic film

to prepare anaerobically fermented grass forage (haylage). The haylage

contained radioactive nuclides (radioactive iodine: undetectable level and

radioactive cesium: 480 Bq/kg).

(B) Horse feed without radioactive nuclides: we used haylage that was produced in

May 2013 at the Animal Resource Science Center. This haylage contained

undetectable levels of iodine or cesium. Horses were fed the non-contaminated

haylage and mixture feed (0.5 kg/400 kg of body weight/day) purchased from

JRA Facilities Co., Ltd. (Tokyo, Japan) depending on the physical condition of

the horses.

(C) A study to assess the effects of “clean feeding” management: Six horses (male

and female, 3–4 years old) that were kept in the stables of the Animal Resource

Science Center were used. They were fed only non-contaminated haylage

(10 kg/400 kg of body weight/day) for 4 weeks before being examined in

June 2013 (380� 28 kg body weight at the end of pre-feeding, n¼ 6). These

horses were then given contaminated haylage (10 kg/400 kg of body weight/

day) for 8 weeks (404� 39 kg body weight at the end of feeding, n¼ 6)

followed by “clean feeding” with non-contaminated haylage and mixture

feed for 4 weeks (391� 38 kg body weight at the end of feeding, n¼ 6),

8 weeks (388� 13 kg body weight at the end of feeding, n¼ 4), and

16 weeks (371� 15 kg body weight at the end of feeding, n¼ 2). During the

study period, each horse’s feed intake was measured daily. The horses were

given free access to water, which contained undetectable levels of iodine or

cesium, through automated system. Following the administration of radioac-

tive cesium-contaminated haylage, and 4 and 8 weeks after the initial admin-

istration of non-contaminated haylage, glutei skeletal muscle samples were

collected by biopsy under sedation and local anesthesia. We sacrificed two

horses each at 4, 8, and 16 weeks after the initial administration of

non-contaminated haylage, under general deep anesthesia. We collected sam-

ples from the heart, spleen, liver, kidney, and psoas major muscle to estimate

radioactive cesium contamination and conventional histopathology. Blood and

feces were also collected. The radioactivity of iodine-131, cesium-134, and

cesium-137 in each horse was measured biweekly. The body weight of each

horse was measured every 4 weeks. During the experiment, a veterinarian

diagnosed the health status of the horses, and conducted blood biochemical

tests and hematological analyses using automatic analyzers every 4 weeks.
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(D) Measurement of radioactive elements: The concentrations of radioactive ele-

ments in each sample were measured using a germanium semiconductor

detector, and each nuclide was identified by gamma-ray spectrometry.

Cesium-134 and cesium-137 were quantified at 661.6 and 604.7 keV, respec-

tively, and each Bq value was calculated by calibrating the count value. Each

radionuclide concentration was calculated based on the weight of each sample.

The detection limit was set to three times the standard deviation of the

background radiation level(s).

7.2.2 Results

(A) Body weight and feed intake: No significant differences were observed in body

weight or feed intake of animals between the non-contaminated haylage

feeding period and the contaminated haylage feeding period (data not shown).

(B) Health status: No serious symptoms were noted in any horse during the

non-contaminated haylage feeding period or contaminated haylage feeding

period. Furthermore, no significant differences were observed in blood bio-

chemical parameters or hematological parameters between the

non-contaminated haylage feeding period and contaminated haylage feeding

period (data not shown).

(C) Changes in radiocesium levels in skeletal muscle, blood, and feces: The

concentrations of radiocesium in the glutei skeletal muscle increased to

78–151 (113� 29) Bq/kg 8 weeks after the start of contaminated haylage

feeding (Table 7.1). After ceasing administration of the contaminated forage,

the concentration of radiocesium in the glutei skeletal muscle of horses, with

the exception of one animal, decreased after 4 weeks, and 30 Bq/kg of

radioactive cesium remained in the glutei skeletal muscle of this one horse.

No detectable levels of radioactive cesium were noted in the glutei skeletal

muscle of any horses 8 weeks after the initiation of the non-contaminated

haylage administration. During the experiments, no detectable levels were

found in blood samples. However, 95–136 (118� 14) and 234–290

(255� 20) Bq/kg were detected in feces samples at 4 and 8 weeks, respec-

tively, after the start of contaminated haylage feeding. Radiocesium levels in

the muscle of horses were slightly lower for horses with high levels of cesium

in their feces. We suggest that the absorption capacity of radioactive cesium

differs between individual horses.

(D) Changes in radiocesium levels and histopathological findings in horse organs:

Two horses were sacrificed at 4, 8, and 16 weeks after the initial administration

of non-contaminated haylage, and heart, spleen, liver, kidney, and psoas major

muscle samples were collected for radioactive cesium measurements and

histopathological evaluations. As shown in Table 7.2, no radiocesium was

detected in heart, spleen, liver, kidney, or psoas major muscle samples at any

time. Moreover, there were no notable histopathological findings in any horse

organs (data not shown).
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7.2.3 Discussion and Conclusion

Horses (body weight ~400 kg) were fed with radiocesium (4800 Bq/400 kg of body

weight/day) for 8 weeks, and subsequently radiocesium was detected in their glutei

skeletal muscles (113� 29 Bq/kg). Radiocesium could not be detected in these

muscles 8 weeks after ceasing administration of the contaminated feed.

We examined the new tolerance level of radioactive cesium values in feed for

horses (less than 100 Bq/kg). We confirmed that when horses were fed for 8 weeks

with haylage contaminated with radioactive cesium at a level that was approxi-

mately 5 times higher (480 Bq/kg) than the new tolerance value, radiocesium levels

in the horse meat were not high (113� 29 Bq/kg). The concentrations of

radiocesium in the skeletal muscles of some horses were lower than the new

reference/regulation level set by the Japanese Government (100 Bq/kg for

radiocesium). Horses were subsequently given feed containing no radiocesium,

and the concentrations of radiocesium in the muscles rapidly decreased. Concen-

trations of radiocesium 4 weeks after ceasing the feeding of contaminated forage

decreased to background levels of less than 5 Bq/kg in 5 horses, but not in one

horse.

Our results indicate that if farmers provide feed with radiocesium levels that are

less than the new tolerance value, the radiocesium levels in horse meat will always

be less than the new reference/regulation level. Moreover, if farmers give horses

feed containing higher levels of radiocesium than the new reference/regulatory

value, then they if they keep these horses on a non-contaminated diet for the same

period of time that the horses were given the contaminated feed, then the

radiocesium should be reduced to allowable levels in the meat.

There were two main routes of radionuclide contamination of farm animals after

the nuclear accident: inhalation and ingestion of contaminated feed and/or water.

Beresford and Howard (2011) reported that inhalation and water intake by animals

were the most important routes in the early phase of the nuclear accident. However,

Table 7.2 Radioactive cesium levels in the heart, spleen, liver, kidney, and psoas major muscle

when animals were sacrificed 4, 8, and 16 weeks after the initiation of the non-contaminated

haylage administration

Horse number

Sacrifice timea Radioactive cesium level (Bq/kg)

(weeks) Heart Spleen Liver Kdney Psoas major muscle

1 4 NDb ND ND ND ND

2 4 ND ND ND ND ND

3 8 ND ND ND ND ND

4 8 ND ND ND ND ND

5 16 ND ND ND ND ND

6 16 ND ND ND ND ND

aHorses were sacrificed 4, 8 and 16 weeks after the initiation of the non-contaminated haylage

administration
bNot detectable: the detection limit was set to three times the standard deviation of the background
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at the ranch of the Animal Resource Science Center (approximately 140 km south-

west from the Fukushima Daiichi nuclear power plant), the concentration of

radionuclides in the air was not at a detectable levels 2 months after the accident.

No radionuclide contamination was detected in drinking water. Intake via water

was previously shown to be a small contributor (Nisbet et al. 2010). Therefore, in

the present study the most important pathway for horses was identified as the

ingestion of radionuclide-contaminated feed.

The degree of absorption from the gastrointestinal tract is an important factor

that determines radiocesium levels in animal tissues. In the case of radiocesium, the

source of ingested radiocesium is a major factor determining subsequent concen-

trations in tissues, with the true absorption coefficient ranging from 0.10 to 0.80

(Howard et al. 2001). That study showed that the absorption levels of radiocesium

particles and soil binding radiocesium were lower than that of radiocesium incor-

porated within plants. In the present study, grass was grown for approximately

2 months after the nuclear accident, harvested, dried, and prepared for haylage. The

fermented grass forage used in the present study may have contained particles of

radiocesium fallout, radiocesium bound to soil, and radiocesium incorporated

within the plant tissues. As described above, extremely low or undetectable levels

of radiocesium were noted in blood samples, whereas increasing levels of

radiocesium (118� 14 and 255� 20 Bq/kg at 4 and 8 weeks after the initial feeding

of contaminated haylage, respectively) were found in feces samples. Although body

weights did not change in horses given a certain amount of radiocesium in haylage

during the experimental period, radiocesium levels increased in their feces. Fur-

thermore, radiocesium levels were low in the muscles of horses with high

radiocesium levels in their feces. This result indicated that the absorption capacity

of radioactive cesium differed among individual horses. We previously reported

differences in radiocesium metabolism among individual cows (Hashimoto

et al. 2011; Manabe 2012; Manabe et al. 2011, 2013, 2014; Takahashi

et al. 2012). These cows were given radiocesium-contaminated feed, and once the

cows were removed from radiocesium-contaminated forage, radiocesium concen-

trations in their milk rapidly decreased. The rate by which radioactive nuclides was

lost from milk was termed the biological half-life, which is defined as the time

required for the radionuclide activity concentration in milk to be reduced by one

half excluding physical decay. The uptake and loss rates of radionuclides varied

among cows and tissues. The biological half-life for radiocesium has been associ-

ated with the metabolic turnover rate of cesium. Changes in radiocesium levels in

milk after the Chernobyl nuclear power plant accident were summarized by the

International Atomic Energy Agency (IAEA) (2005). The rate of decline in radio-

nuclide activity concentrations in milk of different species of dairy ruminants was

rapid. The half-life of radiocesium in various milk sources range 0.5–3.5 days.

These values were consistent with our result (approximately 2.0 days). The biolog-

ical half-life of radiocesium in animals is an important factor influencing the

effectiveness and practicality of many countermeasures targeting animal-derived

foodstuffs, including decontamination using “clean feeding” or cesium binders.
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In order to scientifically understand the phenomenon of radiocesium in horses,

more detailed research is needed on the absorption of radiocesium from feed, its

accumulation and distribution in the body, its pharmacokinetics, and the mecha-

nisms underlying its excretion from the body. In the present study, we did not

examine changes in radioactive strontium-90, which accumulates in bones and

plays a role as a carcinogenic factor in meat. Further research on transfer kinetics

and the coefficient of strontium-90 from forage contaminated by the fallout from

the Fukushima Daiichi nuclear power plant accident to horse meat is also required.

Moreover, the present results involved the initial phase of the accident; there-

fore, further research is needed to remediate livestock management for radiocesium

contamination under the existing exposure conditions, as follows.

1. Improvements in pasture: Feasible and suitable surface improvements in grass-

land and radical improvements in meadow methods for Japanese farming prac-

tices should be developed to reduce radiocesium contamination in grassland.

2. Reductions in radiocesium intake: Feasible and suitable agents should be

explored to prevent gut absorption by administering radiocesium binding agents

to animals. The effectiveness and feasibility of adding candidate binding com-

pounds to fodder such as clay minerals (bentonites, vermiculites, and zeolites)

that adsorb cesium ions, to reduce the gut uptake of radiocesium by farm animals

have been evaluated. The effectiveness and feasibility of the addition of

hexacyanoferrate to feedstuffs has also been determined. The hexacyanoferrate

compound, Prussian blue, is a radiocesium binder that is added to farm animal

feed to reduce the transfer of radiocesium to animal products by reducing its

absorption in the gut (IAEA 1997). Ammonium-hexacyanoferrate (AFCF), the

commonly used form for remediation, was used extensively after the Chernobyl

accident in Russia, Ukraine, and Belarus as well as in western European coun-

tries, including Norway and Sweden, and was shown to be very effective for

animal use (Pearce 1994; Nisbet et al. 2010). Moreover, the acceptability of

these strategies for Japanese farmers also needs to be investigated.

3. Collateral safety of animal products: “clean feeding” management has been

considered feasible and suitable for the production of animal products without

disrupting normal farming practices. Farm animals are provided with

uncontaminated feed or forage with acceptable levels of radiocesium. To pre-

vent the radiocesium contamination of animal products by ensuring that feed-

stuffs that are too highly contaminated are not ingested by farm animals, a

registration system to identify individual farm animals should be developed.

In conclusion, the results of the present study demonstrate that when horses

receive less than 500 Bq/kg, they produce meat contaminated with approximately

100 Bq/kg radiocesium, and that “clean feeding” can reduce radiocesium contam-

ination levels in meat.
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7.3 The Effects of “Clean Feeding” Management on Sheep
Meat: Removal of Radioactive Cesium Due
to the Nuclear Power Plant Accident from Mutton

One hundred sheep (50 male and 50 female), which had been kept in a paddock or

livestock barn in the central area of Fukushima Prefecture (approximately 60 km

from the Fukushima Daiichi nuclear power plant) for approximately 1.5 years after

the nuclear accident were used in the present study (Fig. 7.1). The skeletal muscles

of these animals were considered to contain higher levels of radioactive cesium

than the new reference/regulation value in foods (100 Bq/kg); therefore, these

animals were collected and kept in the “clean feeding” livestock barns of the

National Livestock Breeding Center (Fukushima, Japan). They were given

non-contaminated feed and drinking water for 3 months. Between November

19, 2012 and December 12, 2012 (10 times: 10 animals for each sampling time),

animals were sacrificed under deep anesthesia to collect organ samples [skeletal

muscles (quadriceps muscle and psoas major muscle), liver, kidney, spleen, genital

organs (ovaries or testes), blood, and urine samples]. Radioactive cesium levels

were measured in each sample using a germanium semiconductor detector, and

Fig. 7.1 Sheep kept in a paddock on a mountain in Fukushima prefecture (~60 km from the

nuclear power plant) for ~1.5 years after the accident (a). They were kept in the “clean feeding”

livestock barns of the National Livestock Breeding Center and were given non-contaminated feed

(b). Organ samples were collected in November and December 2012 (c and d)
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each nuclide was identified by gamma-ray spectrometry. No detectable levels of

radiocesium were noted in skeletal muscles, liver, kidney, spleen, genital organs,

ovaries, testes, blood, or urine samples.

After the sheep were directly exposed to radioactive radiocesium, they were

given non-contaminated feed (so-called clean feeding). Radioactive cesium was

found to have initially accumulated in sheep organs but was not detected 3 months

later. These results confirm that “clean feeding” management was also effective for

sheep.

7.4 The Effects of “Clean Feeding” Management for Dairy
Cows: Removal of Radiocesium Due to the Nuclear
Power Plant Accident from Milk

In this section, we described the effectiveness of “clean feeding” management for

cows’ milk. The details of this experiment have already been reported (Hashimoto

et al. 2011; Manabe 2012; Manabe et al. 2011, 2013, 2014; Takahashi et al. 2012).

Changes in radiocesium levels in milk produced by cows given radiocesium

contaminated feed after the nuclear accident on March 11, 2011, were examined

between May 16 and June 26, 2011. Italian ryegrass, which was seeded on

September 2010 and cultivated in the fields of the Animal Resource Science Center

of the University of Tokyo (approximately 140 km south-west of the power plant),

was harvested 2 months after the nuclear accident and prepared for fermented grass

forage, haylage. The cows were born and kept at the Animal Resource Science

Center and were given commercial mixed feed (total mixed ration forage: TMR)

purchased from Zen-Noh Feed (Tokyo, Japan) that contained no radioactive iodine-

131, cesium-134, or cesium-137 for 2 weeks before being examined. The raw

materials of TMR were as follows: 45 % maize, a 29 % mixture of wheat bran

and rice bran, a 21 % mixture of soybean oil cake and rapeseed oil cake, and 5 %

additives (minerals and vitamins). The feed ingredients of TMR were as follows:

16 % crude protein, 2.5 % crude fat, 10 % crude fibers, 10 % crude ash, 0.8 %

calcium, and 0.5 % phosphorus. The cows were initially given the mixed feed of

haylage and TMR at 10 and 25 kg/600 kg of body weight/day, respectively for

2 weeks, and then only TMR (35 kg/600 kg of body weight/day) for 4 weeks as

“clean feeding” management. During this experiment, milk was collected twice a

day and mixed for each cow. The weight and radioactive cesium levels for the

mixed milk from each cow were measured daily. No radioactive iodine-131 was

detected in either the milk or haylage. The radiocesium level in the mixed feed of

haylage and TMR was 380 Bq/kg. Four days after the initial administration of

contaminated feed, radiocesium concentrations in the milk rapidly increased to

30 Bq/kg, and then equilibrated to 36 Bq/kg after 12 days (lower than the new

reference/regulation value for milk: 50 Bq/kg) (Table 7.3). Cows were then given

TMR containing no radiocesium (“clean feeding”), and the concentrations of
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radiocesium in the milk rapidly decreased, with undetectable levels (less than 5 Bq/

kg: background level) noted 14 days after the initial administration of the

non-contaminated feed. Concentrations of radiocesium in milk were then

maintained at the background level. When cows (body weights ~ 600 kg) were

given contaminated feed (12,600 Bq/600 kg body weight/day), 5.71 % of

radiocesium was secreted into the milk (720 Bq/20 kg milk/day). The transfer

coefficient (Fm) for the transfer of radiocesium from cow feed to milk was

calculated according to the following formula: Fm (day/L)¼ radiocesium level in

milk (Bq/L)/the intake of radiocesium by each cow (Bq/cow/day) (Hashimoto

et al. 2011; Manabe et al. 2013, 2014; Takahashi et al. 2012). The radiocesium

Fm value was 0.0029 (day/L) at the highest point of radiocesium levels in the milk.

Generally, infants and schoolchildren consume milk daily; therefore, advanced

safety measures are necessary to ensure that milk contains extremely low levels of

radiocesium. It is thus essential that cows do not orally ingest feed contaminated

with radioactive cesium. Further research is needed to ensure the safety of domes-

tically produced milk. The dynamics of more than 90 % of the radiocesium

contained in polluted feed that is not secreted into the milk needs to be elucidated

in more detail. It is currently unknown whether radioactive cesium that is taken into

the cow body is rapidly excreted through the feces, urine, sweat, or bile. Nor do we

know where, or in which organs, or how much radiocesium accumulates in the cow

Table 7.3 Changes in radiocesium concentrations in milk

Days after initiation

Radioactive cesium level in milk (Bq/kg)

Control group Treated group

Non-contaminated feed Contaminated feed

0 NDa ND

2 ND 22� 4b

4 ND 29� 5

6 ND 33� 5

8 ND 34� 4

10 ND 35� 6

12 ND 36� 4

14 ND 36� 5

Non-contaminated feed Non-contaminated feed

16 ND 29� 3

18 ND 15� 3

20 ND 12� 4

22 ND 9� 2

24 ND 8� 3

26 ND 6� 2

28 ND ND

42 ND ND

56 ND ND

aNot detectable: the detection limit was set to three times the standard deviation of the background
bEach value represents the mean� standard deviation (n¼ 6)
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body if it is not rapidly excreted. We do not know whether the radioactive cesium

that accumulates in a cow’s body is transferred to milk. Further studies are needed

to understand the molecular mechanisms regulating cesium secretion into milk in

dairy cows. The concentrations of various components including minerals in milk

are strictly maintained within a constant range in mammals, and cesium is also

strictly controlled. The concentrations of potassium, an essential element, are

maintained at approximately 1.5 mg/g in cow’s milk. The dynamics of cesium in

organisms is considered to be similar to those of potassium. If the secretion

dynamics of cesium into milk are similar to those of potassium, radioactive cesium

levels in milk may also be maintained at a certain level. Further research is needed

not only for the reconstruction of livestock industries, which were debilitated by the

nuclear power plant accident, but also for the protection and improvement of the

health of the Japanese people.

In conclusion, dairy cows given radiocesium-contaminated feed produced milk

that was contaminated with radiocesium. When these cows were given

non-contaminated feed (so-called clean feeding), radioactive cesium levels in

milk rapidly decreased and reached undetectable levels after 4 weeks. These results

confirm that “clean feeding” management is also effective for dairy cows.

7.5 Conclusion

In the present studies, we demonstrated the effects of “clean feeding” management

on livestock products that were contaminated with radioactive cesium due to the

Fukushima Daiichi nuclear power plant accident in March 2011. Radiocesium-

contamination in animal products represents an important potential route of expo-

sure in the human food chain; therefore, the development solutions reduce and

combat radiocesium-contamination is a serious social issue in Japan. Most farm

animals are kept in closed barns in Japan, which reduced the initial contamination

of animal products by radioactive nuclides in the early phase of the nuclear power

plant accident. Moreover, pigs and chickens in Japan were given imported feed that

was not contaminated by radioactive nuclides. However, adequate amounts of grass

feed, at least 30 % or more of the total feed, are essential for rearing herbivorous

animals (such as horses, sheep, and cattle), and uncontaminated grass feed and/or

forage containing acceptable amounts of radiocesium are needed. The present

results concerning products from horses, sheep, and cattle revealed that no detect-

able level of radiocesium was noted in the products (meat or milk) of herbivores

that received radiocesium-contaminated feed, followed by non-contaminated feed,

a livestock management system called “clean feeding”. In conclusion, “clean

feeding” management plays a crucial role in solving this social problem.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 8

Adverse Effects of Radiocesium
on the Promotion of Sustainable Circular
Agriculture Including Livestock Due
to the Fukushima Daiichi Nuclear Power
Plant Accident

Noboru Manabe, Tomotsugu Takahashi, Chunxiang Piao, Junyou Li,
Keitaro Tanoi, and Tomoko M. Nakanishi

Abstract Appropriate treatment is urgently needed for farm and ranch waste that

has been contaminated with radioactive cesium from the Fukushima Daiichi

nuclear power plant accident. We previously developed an aerobic ultra-high

temperature fermentation (more than 115 �C) method to inhibit intestinal infectious

diseases. Fermented waste (compost), in which pathogens were sterilized, was

useful as a fertilizer to grow crops. In the present study, we examined the kinetics

of radioactive cesium in farming fields to promote sustainable circular agriculture

including livestock in farms and pasture fields in wide areas of Tohoku and Kanto,

in an approximately 200 km radius from the nuclear power plant. The compost

produced at the experimental ranch of the Animal Resource Science Center, the

University of Tokyo, was contaminated with radioactive cesium (approximately

900 Bq/kg). Some crops (soybean, sweet corn, eggplant, bitter gourd, potato,

cabbage, and ginger) were cultivated in cubic holes (approximately 1� 1� 1 m)

that were filled with contaminated compost in the field of the experimental ranch.

Each crop was planted in a hole and cultivated in an appropriate manner for a

suitable time period. Radiocesium levels in the roots, stems, leaves, and fruits of

each crop at harvest were lower than 20 Bq/kg, which was below the new reference/
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regulation value (100 Bq/kg) for food. In conclusion, when crops were planted

using compost contaminated with radioactive cesium (900 Bq/kg; more than twice

the new tolerance value of 400 Bq/kg for fertilizer and compost), the radiocesium

levels in the crops were as low as one-fifth of the new reference/regulation value.

Keywords Aerobic ultra-high temperature fermentation • Compost • Crop

contamination • Fertilizer • Livestock • Manure processing • Sustainable circular

agriculture • Radiocesium • The Fukushima Daiichi nuclear power plant accident

8.1 Introduction

The greatest invention of the twentieth century is considered to be the ability to

produce ammonia industrially in large quantities at a low cost. Ammonia was

produced from nitrogen in the air by the Haber–Bosch process in large factories.

The nitrogen-based chemical fertilizers, ammonium sulfate, ammonium nitrate, and

urea, were stably and inexpensively provided, and they markedly increased food

production. If this ammonia synthesis method had not been invented, the population

of the world would have remained at less than a quarter of the current population.

However, the provision of a sufficient amount of organic fertilizers, in addition to

chemical fertilizers, is known to be essential for the continuous and stable produc-

tion of crops. Thus, compost is an important agricultural material for promoting

sustainable circular agriculture including livestock.

A devastating earthquake occurred in the Kanto and Tohoku regions, northeast-

ern areas of Japan, on March 11, 2011, which also led to the Fukushima Dai-ichi

nuclear power plant accident. The Japanese government subsequently took a series

of measures to deal with the consequences of this accident. New reference/regula-

tion values were established by the Ministry of Health, Labour, and Welfare, Japan

(MHLW) on April 1, 2012. Radioactive cesium will hereafter be used to refer to

radionuclides, and radiocesium levels include the total values for 137Cs and 134Cs.

Radiocesium levels in drinking water, in milk and infant foods, and in other foods

(including cereals, vegetables, fruits, meat, eggs, and fish) had to be maintained at

less than 10, 50, and 100 Bq/kg, respectively. These new reference/regulation

values remain the standard today. In response to these new reference/regulation

values, the Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF)

published new tolerance values on March 23, 2012 in which they limited the

acceptable radioactive cesium levels in livestock feed and bedding, and in fertil-

izers such as compost for crop production (MAFF 2012). Radioactive cesium levels

in feed for meat production had to be maintained at less than 100 Bq/kg for dairy

cattle and horses, 80 Bq/kg for pig feed, 160 Bq/kg for chicken feed, and 40 Bq/kg

for farmed fish. In addition, radiocesium levels within livestock bedding, fertilizers

and compost, soil for crop cultivation, and soil-improving materials had to be

maintained at less than 400 Bq/kg. Because Japanese people have characteristic

eating habit and farming systems, fundamental research to reflect these Japanese

92 N. Manabe et al.



styles and animal feeding methods is needed for revisions of reference/regulation

values and tolerance values.

Radioactive cesium crop absorption is considered to compete with potassium

absorption; thus, an excessive potassium fertilization technique has been developed

to reduce the levels of radiocesium absorption. Appropriate amounts of phospho-

rus- and nitrogen-based chemical fertilizers were used in this technique, but no

organic fertilizers (such as compost produced from the feces of livestock). If

farmers continue to use only chemical fertilizers for a long period of time, then

the decreases occur in crop production. An appropriate amount of an organic

fertilizer is therefore essential for stable agricultural production.

We determined the quantities of radioactive cesium (released by the nuclear

power plant accident) that contaminated plants for food and feed and quantities that

migrated from feed to livestock and livestock products. We also determined the

amount of radiocesium-contaminated feces produced by livestock, the amounts of

radiocesium that moved to soil from fermented feces (compost), and the amount

that was transferred to plants from soil fertilized with compost. In addition, we

summarized the adverse effects of radiocesium on the promotion of sustainable

circular agriculture including livestock.

8.2 Aerobic Ultra-High Temperature Fermentation
Technique for Livestock Feces

Over the past 10 years, we have developed a novel, aerobic, ultra-high temperature

fermentation technique for livestock feces at the experimental ranch of the Animal

Resource Center, The University of Tokyo (Kasama, Japan) to prevent the spread of

digestive tract infectious diseases (Manabe et al. 2014a, b). Briefly, we built

4 fermenters (4.3 m width� 2.4 m height� 8 m depth) surrounded on 3 sides by

a wall and a floor made of concrete. Two grooves (10 cm� 10 cm) were dug into

the floor. A vinyl chloride tube (9 cm in diameter) for delivering air was placed

inside each groove. Air was continuously sent through this tube from the blower,

which was placed outside the fermenter. The fermentation process was as follows

(Fig. 8.1). Fermentation feedstock (including the excretions of farm animals, litter

residues, residues of livestock feed, and residues of crop silage and haylage) was

mixed with an equal amount of the end products of fermentation. These farm

residues were contaminated with radioactive cesium due to the nuclear power

plant accident. An appropriate amount of air was supplied during the fermentation

process. Three days after initiating fermentation, the temperature of the central area

of the fermenter increased to more than 115 �C. Denaturing gradient gel electro-

phoresis analysis revealed that the dominant bacteria in the flora of the ultra-high-

temperature fermenter were the Geobacillus family (Geobacillus thermodeni-

trificans, Geobacillus tropicalis, and Geobacillus stearothermophilus), Bacillus

thermodenitrificans, Sphingobacteriaceae bacterium, Thermoactinomyces
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Fig. 8.1 Aerobic ultra-high temperature fermentation process for livestock feces and farm

residues. (a and b) Overview of fermenters (4.3 m width� 2.4 m height� 8 m depth). Three

side walls and a floor were made of concrete. An appropriate amount of air was supplied from

2 vinyl chloride tubes installed in the floor grooves of the floor without interruption from the

electric blower, which was placed outside of the fermenter. (c) Feedstock (mixture of the

excretions of farm animals, litter residues, livestock feed residues, and residues of crop silage

and haylage) before fermentation. (d) Appearance of the fermenter of the start of the fermentation

stage. Feedstock was mixed with an equal amount of the end products of fermentation (mostly the

dormant spores and sprouts of high temperature fermentation bacteria). (e) During fermentation,

all fermenting mixtures were moved into a neighboring fermenter using a wheel loader. This

mixture process of fermenting substances was repeated every 7 days. (f) After being mixed

6 times, the fermenting substances became powdery (moisture content less than 35 %) 7 weeks

after the start of fermentation. The fermented product at the final point was used as an organic

fertilizer for crops and pasture cultivation
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sanguinis, Thermus thermophilus, Thermaerobacter composti, and Bacteroidetes

bactereria. Bacteria from the Planifilum, Rhodothermus, Thermaerobacter, and

Thermus families were also detected. The ultra-high temperature continued for

2 or 3 days. Seven days after the initiation of fermentation, all of the fermented

mixture was moved into the neighboring fermenter using a wheel loader. This

exchange was repeated six times. The fermented product at the final point

(7 weeks after initiation) became powdery (moisture content less than 35 %).

Most of the end products of the final fermentation were mixed with the next

fermentation feedstock, and the next fermentation process was started. The end

products were used as an organic fertilizer for crops and pasture cultivation at the

experimental ranch. The radioactive cesium contamination level in the compost

was approximately 900 Bq/kg, more than twice the new tolerance value (400 Bq/

kg). Pathogens were sterilized in the fermented waste, which inhibited the spread of

intestinal infectious diseases. In our preliminary experiments, aerobic ultra-high

temperature-fermented compost exhibited excellent effects as an organic fertilizer

on 22 different crops including rice, soybean, kidney bean, green peace, onion,

green onion, cucumber, tomato, eggplant, potato, pepper, cabbage, radish, and

turnip.

8.3 Radiocesium Dynamics in Crops Grown
with Contaminated Compost

Prior to the nuclear accident, the average level of radioactive cesium in farmland

soil in Japan was approximately 20 Bq/kg (between 5 and 140 Bq/kg). After the

accident, the Japanese government established a new tolerance value (400 Bq/kg)

for farmland soil, soil improvement materials, and fertilizers. An appropriate

method for treating farm waste contaminated with radioactive cesium has not yet

been developed. In order to obtain fundamental understanding for the development

of such a method, we examined radiocesium dynamics in crops. These crops were

cultivated using aerobic ultra-high temperature-fermented compost produced at the

ranch of the University of Tokyo, which is located approximately 130 km southwest

of the Fukushima Daiichi nuclear power plant.

Approximately 3 months after the accident, June 13, 2011, 131I was not detected

in the soil of farm fields, although radiocesium levels in the soil were 50–240 Bq/

kg. We prepared haylage of Italian ryegrass, which was grown in farm fields. The

radioactive cesium level in the haylage was 3900 Bq/kg (the new tolerance value

for cattle, goat, sheep, and horse feed was less than 100 Bq/kg). Our preliminary

experiment performed in June, 2011 showed that radioactive cesium levels in the

skeletal muscle of goats (native Japanese Shiba goat: body weight of approximately

40 kg) were approximately 130 Bq/kg (the new reference/regulation value for

humans was 100 Bq/kg) when they were fed this contaminated haylage (60 g/kg

of body weight/day: 2.4 kg/goat/day, and 9360 Bq/goat/day) for 1 month (Manabe
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et al. 2014c). Radioactive cesium levels in the feces of these goats (approximately

1 kg/goat/day) were approximately 10,000 Bq/kg.

Between June and September, 2011, approximately 40 milking cows, 120 goats,

20 horses, and 30 pigs were reared in the experimental ranch of the University of

Tokyo. The feces, straw litter residues, feed residues, and the waste feed of

livestock were used to produce the fermented compost. Radioactive cesium levels

in aerobic ultra-high temperature-fermented compost were approximately 900 Bq/

kg.

We examined the circulation of radioactive cesium in crops, using this compost

as a crop fertilizer, by the following process (Fig. 8.2). First, we dug holes

(approximately 1 m� 1 m� 1 m) in a field at the experimental ranch. Second,

each hole was filled with compost contaminated with radiocesium (900 Bq/kg).

Third, each crop (soybean, sweet corn, eggplant, bitter gourd, potato, cabbage and

ginger) was planted in a cubic hole and cultivated in an appropriate manner for a

sufficient period of time. Finally, we measured radiocesium levels in the roots,

stems, leaves and fruits of each crop were at each crop’s time harvest.

Radioactive element concentrations in each sample were measured using a

germanium semiconductor detector, and each nuclide was identified by gamma-

ray spectrometry. 134Cs and 137Cs were quantified at 604.7 and 661.6 keV, respec-

tively, and each Bq value was then calculated by the calibration of count values.

Each radionuclide concentration was calculated based on the weight of each

sample. The detection limit was set to three times the standard deviation of the

background. The radioactive cesium levels included both 134Cs and 137Cs levels.

Radioactive cesium levels in the roots, stems, leaves, or fruit of each crop were

lower than 20 Bq/kg (1/5 of the new reference/regulation value for human food).

Thus, the present empirical research results confirmed that radiocesium levels in

roots, stems, leaves, or fruit of crops cultivated in radiocesium-contaminated

compost were less than one fifth of the reference/regulation value. These results

suggested that the transition rate of radioactive cesium to crops from soil and

compost was low.

We also conducted preliminary experiments. Briefly, we planted and cultivated

barley, buckwheat, sweet corn, dent corn, Italian rye grass, soybean, green peas,

eggplant, tomato, bitter gourd, potato, sweet potato, cabbage, green onion, onion,

ginger, bitter gourd, cucumber, and lotus root in soil contaminated with approxi-

mately 200 Bq/kg of radiocesium (half of the new tolerance value) mixed and

fertilized with radiocesium-contaminated compost in a field at the Animal Resource

Science Center. Similar to the hole-culture experiment described above, each crop

was planted in the ridge of the field and was cultivated in an appropriate manner for

a sufficient period of time. Radiocesium levels in the roots, stems, leaves, and fruit

of each crop were measured at the harvest time of each crop. Radioactive cesium

was below the detection limit in all parts of the crops examined.

The results of the present study demonstrate a low migration rate of radioactive

cesium to plants from soil containing contaminated compost. However, the mech-

anism of radioactive cesium migration into crops has not yet been elucidated in

detail. We speculate that one of the mechanisms involves the dormant spores and
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sprouts of high temperature fermentation bacteria. During fermentation, bacteria

incorporate radioactive cesium into their bodies. Radioactive cesium then strongly

binds with fine and stable organic and inorganic materials in the bacterial body.

Since the radioactive cesium remained strongly and stably bound to bacterial

materials after compost was mixed with the soil, radiocesium could not be easily

absorbed into the plant.

Fig. 8.2 Overview of the crop cultivation experiment. (a and b) One cubic meter holes were dug

and filled with radiocesium-contaminated compost (approximately 900 Bq/kg). (c and d) Culti-
vation of soybean and sweet corn, respectively, in each cubic hole. (e and f) Eggplant was planted
in the cubic hole and was cultivated in an appropriate manner for a sufficient period of time.

Radiocesium levels in the roots, stems, leaves, and fruit of each crop were measured at the

harvest time
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8.4 Conclusion

Crops were grown in soil contaminated with radioactive cesium (900 Bq/kg; twice

the new tolerance value for soil). The radioactive cesium levels in the roots, stems,

leaves, or fruits of each crop were less than 20 Bq/kg, which is lower than the new

reference/regulation value for human food, 100 Bq/kg. Moreover, when a range of

crops was cultivated in soil contaminated with radioactive cesium (approximately

200 Bq/kg, i.e. half of the new tolerance value for soil), radioactive cesium was not

detected in the roots, stems, leaves, or fruits of each crop. These practical research

results indicate that the tolerance values of radiocesium for agriculture should be

reviewed. Sustainable agriculture, including livestock, need to be revived within

radiocesium-contaminated areas of Japan, as they are important food production

regions. The utilization and production of livestock compost play an important role

in such sustainable cycling agriculture system. In conclusion, the results of the

present study contribute to the revival of cycling agriculture.
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Chapter 9

Wild Boars in Fukushima After the
Nuclear Power Plant Accident:
Distribution of Radiocesium

Keitaro Tanoi

Abstract In the present chapter, I present the distribution of radiocesium in wild

boars as well as the official monitoring data of wild boars from Fukushima. After

the nuclear accident in 2011, the radiocesium contamination levels in wild boars

from most places in Fukushima Prefecture exceeded 100 Bq/kg. The most contami-

nated wild boars were observed in Soso district where the radiocesium concentra-

tion in the soil was the highest in the entire Fukushima Prefecture. To understand

radiocesium contamination in wild boars in more detail, we measured radiocesium

concentrations in different organs and tissues of wild boars inhabiting Iitate Village

in Soso district in 2012 and 2013. After capturing the wild boars, we collected

24 organs and tissues and put them into vials. Using an NaI(Tl) scintillation

counter, we determined the concentrations of radiocesium (134Cs and 137Cs) and

found that the levels were highest in the muscles (approximately 15,000 Bq/kg) and

lowest in the ovaries (approximately 600 Bq/kg) in 2012, indicating a large

variation between the organs and tissues. The trends were similar in 2012 and

2013. Observations of the contamination levels in wild boars could reveal the

radiocesium availability in the forest and village ecosystem.

Keywords Fukushima Daiichi nuclear power plant accident • Wild boar •

Radiocesium • Fission products • Food security • Wild animals • Wild life •

Forest • Radioactive contamination

9.1 Introduction

Significant quantities of radiocesium were released during the accident at the

Fukushima Dai-ichi Nuclear Power Plant (FDNPP) of the Tokyo Electric Power

Company in March 2011 (Yasunari et al. 2011; Zheng et al. 2014). From soil
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measurements, it was shown that radiocesium was highly deposited in the north-

western region of the power plant (Saito et al. 2015). Fortunately, very small

quantities of radiostrontium (Steinhauser et al. 2013) and plutonium (Zheng

et al. 2012; Schneider et al. 2013) were deposited in the soil in most areas of

Fukushima. Several months after the accident, the dominant radionuclides in the

soil were 134Cs and 137Cs. There have been many kinds of inspections of agri-

cultural products and foods in Fukushima Prefecture, and the contamination levels

in the wild animals of the forests, particularly wild boars, were found to be

very high, presumably because wild boars have a habit of eating soil attached to

their food, similar to an earthworm. Firstly, I summarized the inspection data of

wild boars from Fukushima prefecture in the next section.

Data for radiocesium distribution in animals were limited. Green et al. (1961)

reported the distribution of radiocesium and potassium in pigs and calves. Fukuda

et al. (2013) reported radiocesium distribution in cattle. These reports showed that

radiocesium levels were the highest in muscles and that there were large variations

between the organs. Here, I present the radiocesium distribution within wild boars

captured in Iitate Village where the habitants remain evacuated because of the high

radiation levels caused by radiocesium deposition (Fig. 9.1).

Soso

District

Southern Aizu 

District

Aizu 

District

Ken-nan 

District

Ken-chu

District

Ken-poku

District

Iwaki 

District

Fukushima 

Dai-ichi

NPP

20 km

400 km

Lake 

Inawashiro

Iitate-Village

Fig. 9.1 Map of Iitate Village. Iitate Village is located in Soso district. The total area is 23,013 ha.

Approximately 75 % of the area is mountain or forest
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9.2 Inspection Data from Fukushima

The inspection data is accessible from the website “Fukushima Shinhatsubai”

(http://www.new-fukushima.jp/monitoring/en/). I have summarized the data and

separated it according to each district (Fig. 9.2). The radiocesium levels were high

in Soso district, and the highest concentration of 137Cs exceeded 50,000 Bq/kg in

2013. Because the radiocesium levels remained high during these 4 years, we

cannot speculate about when the meat of wild boars from this area can be used as

food. From April 2012, the standard in Japan for the allowable radiocesium

concentration in meat has been 100 Bq/kg (Hamada et al. 2012). The current

radiocesium levels in wild boar meat are now significantly higher than the standard

level.
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Fig. 9.2 Radiocesium concentrations in wild boars collected in Fukushima after the nuclear

accident. Upper: Total radiocesium concentrations (134Cs + 137Cs) in wild boars, which is the

measure used to monitor food in Japan. Lower: 137Cs concentrations in wild boars
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9.3 Distribution of Radiocesium in Wild Boars in 2012
and 2013

Because Iitate Village is now in the evacuation zone, damage to agricultural fields

by wild animals such as monkeys and wild boars has been increasing. Before the

nuclear power plant accident, hunting was performed to control the number of

wild animals, and some of the hunted animals such as wild boars and deer were

sold for meat. However, the radiocesium contamination in wild animals now pre-

vents people from hunting them. The wild animal problem has become more

serious with time.

In 2012, members of the NPO “Resurrection of Fukushima” and researchers

from the University of Tokyo started to investigate the radiocesium levels in wild

boars in Iitate Village (Tanoi et al. 2016). Wild boars were hunted for pest control

and then the organs, tissues, contents of digestive organs, and blood were collected

(Figs. 9.3 and 9.4). We investigated seven wild boars in 2012 and two wild boars in

2013. Five were captured in a single cage on November 25, 2012 (identified as

20121125-01 to 20121125-05) and two on November 29, 2012 (20121129-01 and

20121129-02). Two more boars were captured in separate cages on December

6, 2013 (20131206-01 and 20131206-02). Radiocesium in the samples were mea-

sured using a NaI(Tl) scintillation counter (2480 WIZARD2 gamma counter,

PerkinElmer, Waltham, MA). Only the radiocesium activities of the blood samples

taken in 2012 were measured using a germanium semiconductor detector

(GEM-type, ORTEC, SEIKO EG&G, Tokyo, Japan).

Wild animals hunted as vermin were consumed previously as game meat. In

Japan, the radiocesium concentration in food has been controlled according to the

sum of 134Cs and 134Cs activities (Bq kg�1). In general, we eat the muscles of wild

animals. The average radiocesium concentration in muscle tissues was approxi-

mately 15,000 Bq kg�1, which was the highest value among the organs tested

(Fig. 9.5). In addition to the muscle, most of the organs exceeded the provisional

regulation value for meat (500 Bq kg�1) (Hamada et al. 2012), which was the

regulation level of radiocesium until March 31, 2012, although the new standard

from April 1, 2012 remains at 100 Bq kg�1 (Hamada et al. 2012). The radiocesium

concentrations in the ovaries were the lowest among the organs (600 Bq kg�1);

however, they still exceeded the provisional regulation value (Fig. 9.5). None of the

organs were distributed as food.

The 137Cs accumulation patterns were almost the same between 2012 and 2013.

The highest 137Cs concentrations were found in the muscles, kidneys, tongue, and

heart (Figs. 9.5 and 9.6). The tissues with low 137Cs were similar between 2012 and

2013. The lowest 137Cs concentrations were found in the ovaries, bone, and thyroid

glands. The trend is similar to that observed in cattle contaminated by the FDNPP

accident in 2011 (Fukuda et al. 2013), whereby the radiocesium concentrations in

the muscle, kidney, tongue, and heart were consistently higher than the other

organs. In addition to cattle, the radiocesium concentrations were highest in the

muscles of pigs fed with brown rice that was contaminated by the FDNPP accident,
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Fig. 9.3 The procedure for collecting wild boars. After capturing the boars in a cage, they were

shot and dissected into organs and tissues
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Fig. 9.4 Wild boar anatomy chart
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followed by the liver and digestive tract, which follow a similar ranking to our data

(Ohmori et al. 2014). In addition, when pigs were contaminated by the

global fallout around 1950–1960, the ranking of contaminated organs was similar

to the present study: higher concentrations in the muscle, kidney, and heart and

lower concentrations in the brain, blood, and female reproductive tract (ovary and

uterus in our study) (Green et al. 1961).

Wild boars eat a variety of foods such as plants, insects, mushrooms, and small

animals; therefore, the radiocesium concentration in the stomach contents reflect

the available radiocesium in the forest ecosystem. In the present study, the 137Cs

concentrations of boar stomach contents in 2012 and 2013 were almost the same
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The gray bars represent adult boars and white bars represent juvenile boars
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(Figs. 9.5 and 9.6), indicating that the 137Cs situation in the forest did not change

between 2012 and 2013. However, the 137Cs concentrations in organs and tissues

were different between 2012 and 2013 (Figs. 9.5 and 9.6). It is unclear why stomach

contents did not correlate with the organs in terms of 137Cs. Furthermore, the reason

for different 137Cs concentrations between juveniles and adults in 2013 is unclear.

We need to continue monitoring the wild boars to understand the reasons for these

results.

Collecting blood is much easier than collecting other organs or tissues. Thus, it is

of interest to compare the 137Cs concentrations in blood with those in other organs

or tissues. The 137Cs concentration ratios of blood to muscles are summarized in

Table 9.1. Unfortunately, the 137Cs ratio of blood to muscle was not consistent,

indicating that blood is not a suitable material for monitoring radiocesium concen-

trations in the muscle of wild boars. We also found species differences, whereby the

ratios of 137Cs concentration of blood to muscles in wild boar, 0.24 on average,

were much higher than the value of 0.04 reported for cattle (Fukuda et al. 2013),

0.01 for calf (Green et al. 1961), and 0.10 for pig (Green et al. 1961). The reason

why these 137Cs concentration ratios differed so markedly among animals remains

unclear.
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Table 9.1 The ratios of blood to muscle in 137Cs

Animals Year Description

137Cs ratio of

blood to muscle Reference

Wild boar 2012 Average of 2 juvenils 0.22 Tanoi et al.

(2016).

Wild boar 2012 Average of 2 adults 0.23 Tanoi

et al. (2016).

Wild boar 2013 Juvenil 0.14 Tanoi

et al. (2016).

Wild boar 2013 Adult 0.41 Tanoi et al.

(2016).

Pig 1960s 0.10 Green

et al. (1961)

Calf 1960s 0.01 Green

et al. (1961)

Cattle 2011 Average of 79 cattles (63 of adults and

13 of calves)

0.04 Fukuda

et al. (2013)
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Chapter 10

Contamination of Wild Animals:
Microhabitat Heterogeneity and Ecological
Factors of Radioactive Cesium Exposure
in Fukushima

Ken Ishida

Abstract Wildlife, mainly 69 bird (Aves) species, has been observed in Abukuma

Mountains, northeastern Fukushima Prefecture, which is the most radioactively

contaminated area, over the seasons since July 2011. However, it is still unclear

whether the changes in the bird community have been caused by the radioactive

contamination and/or by changes in human activity, adding to the natural dynamics.

The aerial dose rate at the survey area was initially estimated to be more than

100 μSv/h (mainly 137Cs, 134Cs, and 131I), which decreased in the summer of 2014

to 0.1–20 μSv/h (mainly 137Cs and 134Cs). Radioactivity in wild habitats is hetero-

geneous among the microhabitats and is dynamic through time and seasonal

conditions. Microhabitat radio-heterogeneity was clearly indicated by the

2-month-long measurement with 200 dosimeter badges in this study. The ecolog-

ical factors related to free living (in-situ) wildlife in the highly contaminated area of

Fukushima are discussed.

Keywords Free-living • Wildlife • Microhabitat • Ecosystem • Radiation •

Heterogeneity • Dynamics • Long term • Fukushima • Bush-warbler

10.1 Introduction

Monitoring the ways in which free-living animals, say in-situ wildlife, experience

changing radiation levels and other environmental factors at Fukushima and Cher-

nobyl (where the severe, IAEA rank seven, nuclear power accidents have been

experienced), is crucial for the future world of higher radiation levels (Akimoto

2014; Hiyama et al. 2012; Ishida 2013; Møller et al. 2013). Since March 11, 2011,

highly contaminated areas stretch northwestward from the Fukushima Daiichi

nuclear power plant (F1NPP), to the northern Abukuma highland, Fukushima
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Prefecture, Japan (Figs. 10.1, 10.2, and 10.3). The landscape of this area comprises

paddy field, farmlands, natural and artificial forests, grasslands, ponds, and streams,

where the biodiversity is directly related to the habitat heterogeneity. The aerial

dose rates were initially estimated to be more than 100 μSv/h at some hot spots even

farther than 30 km from the F1NPP. For example, the maximum value was

170 μSv/h at Techiro, Akaugi, Namie, Fukushima during spring prior to new

plant growth and prior to breeding for most birds and other animals (estimated on

March 16, 2011, Ministry of Education, Culture, Sports, Science and Technology,

Japan (MEXT) 2011). Within the habitat, there were about 15 terrestrial mammals

including the macaque monkey (Macaca fuscata) and about 70 birds including the

bush warbler (Cettia diphone). I first describe the dominant bird species, habitat

Fig. 10.1 Map of radiation fallout distribution and the location of the study area
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heterogeneity through the study area, and microhabitat radiation heterogeneity in

it. Then I will discuss on the analyses and future gain of long term monitoring of

free-living birds.

10.2 Landscape, Climate, and Biodiversity of Abukuma
Highlands

A description of the Abukuma Mountains was given in the previous volume (Ishida

2013). Here I explain the detailed characteristics of the habitats, which relate to

wildlife radiation exposure and biodiversity of the most highly contaminated areas.

Fig. 10.2 Map of

Abukuma Mountains,

Fukushima Daiichi nuclear

power plant (F1NPP), the

three main study sites

(Akaugi and Omaru of

Namie Town, and

Yamakiya of Kawamata

Town). The yellow line at

the center indicates the

55-km long section from

F1NPP to Abukuma River,

the vertical profile of which

is shown in Fig. 10.3
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I define a “high” contamination area as that in which the estimated fallout of total
137Cs and 134Cs is more than 3000 kBq/m2 (red area in Figs. 10.1 and 10.4), and

“low” or “none” contamination areas in which the contamination is less than

1000 kBq/m2 (yellow, mauve to green in Figs. 10.1 and 10.4). I explain why I do

not use the measurements of dose rates recorded at each place for comparison in

Sect. 10.4.

The F1NPP reactors are located on the eastern Pacific coast (Fig. 10.2). The

closest to F1NPP reactors and most highly contaminated area is in the narrow flat

plain of 5–10 km (Hamadori Plain). This region comprises residential areas among

paddies and farmland (Fig. 10.3). Next to this plain is a steep slope with small

valleys covered by a forest of coniferous plantations, secondary pine, and deciduous

trees. The elevation increases quickly up to about 400 m and the slope of this part of

the eastern side functions as a radiative shield. Such terrain effects were also

indicated at in farther areas such as Chichibu Mountains (the southwestern edge

of the contamination area expanding to 250 km from FINPP) and Iide Mountains

(150 km west) as outlined in the MEXT report (2011, pp. 25–26).

The western area contains a highland plateau with many small hills about 600 m

above sea level. The highest peak of Mt. Ootakine is 1192 m, the next Mt. Hiyama

1057 m, and the others are less than 1000 m. This highland plateau comprises a

scattering of paddies, farmland, pastures, orchards, coniferous and deciduous for-

ests, grasslands, streams, and ponds. Habitat heterogeneity and biodiversity are

highest around this landscape. On the western side of Abukuma Mountains is a

gentle slope with low hills, farmland, and forest (Fig. 10.3), which connects to the

eastern highland plateau (it should be noted that there is no distinct border between

these regions). Less of this area has been developed into agricultural fields as

compared to the East, and more people live toward the West of Abukuma River.

Along this river, there were several central cities of the Fukushima Prefecture, such

as Koriyama, Nihonmatsu, and Fukushima (Nakadori Plain).

Fig. 10.3 Topological profile and landscape characteristics along the 55-km East–West line from

F1NPP to Abukuma River, or Koriyama City (Refer to the yellow line in Fig. 10.2)
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There are significant seasonal changes evident by the following phenomenon:

rapid plant growth in spring (April to May); a flash of insects and other small

animals such as frogs and spiders in summer (June to August); leaf coloring and

falling in autumn (September to November); and snow accumulation in winter

mainly on the highland plateau (December to March, Fig. 10.5). On March

11, 2011, there was some snow cover left on the ground in the highlands, and

most plants and animals were not yet active or had not yet arrived for breeding.

Large areas, except the eastern steep slope, is occupied by paddy fields, which also

undergo significant seasonal changes; water flooding during the growth of rice and

rapid growth of rice stems, which is then followed by the disappearance of both

during autumn. The paddy fields are surrounded by streams and forests (see also

Fig. 12.3 in Ishida 2013).

Fig. 10.4 Sites of early morning bird point count survey and microhabitat aerial dose rate

measurements: Blue dots indicate the sites in the highest (>3000 kBq/m2), greens in the middle

(1000–3000 kBq/m2), reds in the lower (<1000 kBq/m2) contamination areas. Not all the sites are

presented here
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10.3 Bird Communities in the Northern Abukuma
Highlands

The author observed 69 bird species during 25 surveys in the study area from July

2011 to August 2014. During 5-min point count surveys (Møller et al. 2013), which

were conducted in the early mornings of mid-June (3:40–9:00 a.m.), 3–13 species

were recorded at each count (Figs. 10.4 and 10.6). I recorded fewer species in the

high contamination area and more species in the intermediate and low radiation

areas in 2012, although the differences were not statistically significant (P> 0.05,

Mann–Whitney U-test). After 1 April 2013, entrance was restricted by law, and I

could only perform a few early morning point counts within the area. So the range,

average, and standard deviation of the number of observed species in only the low

contamination area are shown for 2013 and 2014 in Fig. 10.6. These data illustrate

the agreement on that the degree of diversity was lower for bird and butterfly

species and higher for spiders in the high contamination areas in Fukushima

(Fig. 10.3 in their paper, Møller et al. 2013). This mixed result may have arisen

from of habitat diversity change, radiation, and/or human activities.

The 10 most dominant species in the point count survey were almost common

during the 3 years of observed breeding seasons (Table 10.1). In addition, the three

most dominant species, Cettia diphone, Hypsipetes amourotis, and Emberiza

cioides, were also consistent in their ranking order, and four other species, Cuculus

policephalus, Corvus macrorhynchos, Parus minor, and Phasianus versicolor were

always in the list and have been frequently recorded. C. policephalus is a parasite of

Fig. 10.5 Climate of Iitate Village, data from Japan Meteorological Agency for 2011: there is

snow accumulation during January to March, more rainfall in early summer, and seasonal

temperate change. Sometime typhoons (tropical cyclones) bring much rain in late summer or

early autumn
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the most dominant C. diphone. Overall, these seven species are common as edge

species or users of variable ecosystems. Acrocephalus arundinaceus is a common

summer visitor that has a loud call. It inhabits marshlands and breeds in reed beds.

This species may have immigrated earlier or more in 2014 than the other years, and

was recorded in the point counts conducted during mid-June. These seven or eight

Fig. 10.6 Bird species

richness estimated with

early morning point count

surveys in mid-June: the

survey within the higher

contamination area

(1000 kBq/m2) was

restricted since April 2013.

Average and ranges

(minimum, standard

deviation, and maximum) of

species numbers recorded

are shown for the 3 years of

2012–2013, only for the low

radiation (<1000 kBq/m2)

district

Table 10.1 Ten dominant species of birds in point count survey (observation frequency rate)

Rates are per 38, 34, and 33 counts in each year

2012 2013 2014

Cettia dipohne 0.84 C. dipohne 1.00 C. dipohne 0.97

Hypsipetes

amourotis

0.76 H. amourotis 0.94 H. amourotis 0.94

Emberiza cioides 0.55 E. cioides 0.68 E. cioides 0.58

Cuculus

poliocephalus

0.47 P. minor 0.56 C. macrorhynchos 0.55

Corvus

macrorhynchos

0.45 C. macrorhynchos 0.53 C. poliocephalus 0.42

Parus minor 0.47 Streptopelia

orientalis

0.50 Acrocephalus

arundinaceus

0.42

Phasianus versicolor 0.39 C. poliocephalus 0.47 P. minor 0.33

Carduelis sinica 0.32 P. versicolor 0.35 Poecile varius 0.27

Zosteropus japoniucs 0.26 Passer montanus 0.26 P. versicolor 0.24

Streptopelia

orientalis

0.26 Garrulax canorus 0.24 Passer montanus 0.21
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dominant species might be good indicator birds of environmental change and/or

radiation effects in this area (Gregory and Strien 2010).

Other species are less common and their populations fluctuate annually. For

instance, Passer montanus is a common species around human houses and paddies

all over Japan. Streptopelia orientalis, the common pigeon in low elevations in

Japan, was also frequently observed much more in 2011. Pigeons and doves are

strong flyers and can quickly change their distribution depending on their food

resource. Carduelis sinica was observed at more than 20 % of point count sites in

2013, Garrulax canorus more in 2012, and Zosteropus japoniucs more in 2014.

Poecile varius was dominant only in 2014. It will depend on the future observations

as to whether these species will contribute toward change in the wildlife after the

F1NPP accident.

10.4 Heterogeneity of Microhabitat Radioactivity

It has been proven that radioactive substances, 137Cs and 134Cs, strongly fix to clay

soils in the ecosystem (Chap. 1). The purpose of many studies in Fukushima is to

investigate the dynamics of Cs within and among the ecosystems. Their macro-

distribution has been well examined and published on the web (MEXT 2011). It is

also well known that there are hotspots and that dose rates are higher close to the

ground. I examined dose rates in the field with dosimeter badges (type ES, Chiyoda

Technol Co. Ltd., Tokyo) set at tree trunks for about 2 months.

The dose rates at about 1 m above the ground in forest stands decreased

according to the half-life of 137Cs and 134Cs, and they were lower during the season

with snow accumulation (Figs. 10.5 and 10.7).

I set about 100 dosimeter badges at each of the two locations to examine the

microhabitat heterogeneity of radioactivity during December in 2012 and January

in 2013. One location was at Techiro, Akaugi, Namie Town (37�3503300N,

140�4501400E) in a high contamination area, and the other was located at

Kamitashiro, Yamakiya, Kawamata Town (37�340600N, 140�41036 00) in a low

contamination area (Fig. 10.4). The badges were located within a 300-m radius at

Techiro, and within a 200-m radius at Kamitashiro (Fig. 10.8). Most were set on the

tree trunks at 0 m (on the ground), 1.2 m (breast height) and 2 m (head height).

Some were set in a plastic tube at 0.15-m depth in the ground, and up to 11 or 12 m

above the ground on tree trunks or on a tower (Fig. 10.8).

Higher radioactivity was recorded on the ground, and the radioactivity decreased

according to the vertical distance from the ground increased (Fig. 10.9). Although

only one or two samples were taken at 0.15-m depth, the radioactivity was lower

than that of samples on the ground surface at the same places. For samples

measured on a deciduous tree trunk, the radiation decreased in a non-linear fashion

relative to the distance from the ground (Fig. 10.8, right); probably because the

radioactive substances remained either in the bark, or in the moss or lichen on the

bark. The dose rates heterogeneity was high among the microhabitats within a small
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area. The dose rates in Kamitashiro and in Techiro varied tenfold and threefold,

respectively (Fig. 10.9). The dose rates depended on the direction of the slopes in

which each microhabitat located with respect to F1NPP and on a small scale

(several meters) and large scale geometric structures (Fig. 10.8, left).

Fig. 10.7 Ecological decline process of aerial dose rate at several contaminated districts in

Fukushima

Fig. 10.8 Outline profile of aerial dose rate microhabitat heterogeneity, which depends the

distance (height) from the soil (ground), direction towards F1NPP, surrounding topology, vegeta-

tion, and artificial management. (a) Aerial view taken from the southwest with a motor hung

glider: some main microhabitats and their dose rates at Kamitashiro, Yamakiya of Kawamata

Town (F1NPP is right forward), (b) an oak tree and its dose rates along its trunk (0 to about 11 m

from the ground) at Techiro, Akaugi of Namie Town. The dose rates on the groundwas 12.4 (μSv/h)

and at the height of 11 m was 10.5 (μSv/h). See also Fig. 10.9
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10.5 Effects of Radioactivity on Bush Warbler and Boar

The bush warbler (Cettia diphone) is the most dominant bird, and its microhabitat is

the dense bush at lower heights, usually up to 2 m from the ground, in a variety of

vegetation and ecosystems from the coast to the mountaintop. Wild boar (Sus

scrofa) is a common mammal in the forest and grasslands, and Abukuma highland

is the northernmost border of its distribution in Japan. The boar is omnivorous and

often forages for various things by digging into the soil with its strong nose.

Therefore, both of these animals have a high probability of being close to the

radioactive substances in the contaminated area of Fukushima, and should be two of

the best indicator species to monitor the effects of the F1NPP accident on free-

living animals.

Tail feathers (Pirastro et al. 1993) of the bush warblers, caught at Akaugi, were

contaminated with up to 556 Bq/g of 137Cs, 134Cs, and 110mAg in mid-August 2011

(Ishida 2013). The contamination level of feathers at the same site decreased to

about 20 % in 2012 and contamination became less frequent among the individuals

in 2013. Fukushima Prefecture (2014) published radioactivity measurements of the

muscle of game animals, including boar, on its website. For this study, I picked up a

total of 680 samples collected from boars, caught in Fukushima during the period of

22th May 2011 until 20th August 2014. The dose rates ranged from “not detected”

(137Cs< 5.5 Bq/kg and 134Cs<< 4.0 Bq/kg) to 61 Bq/g (a boar from Minamisoma

City on 11 March, 2013). The highest value in 2014 was 2.4 Bq/g (a boar from

Minamisoma City on 27 July). Wildlife exposure measurements started soon after

the F1NPP accident, and long term monitoring of these animals may contribute to

our understanding the dynamics of radioactive substances in the ecosystem (and

evnvironmental protection; ICRP 2008).

Fig. 10.9 Microhabitat

heterogeneity of aerial dose

rate at two sites, estimated

with dosimeter glass badges

(type ES, Chiyoda Technol

Co. Ltd., Tokyo) fitted for

2 months in the field.

Abbreviations: IG in the

ground (15-cm depth), OG

on the ground, BH breath

height (1–1.2 m above the

ground), HH head height

(~2 m), IA in the air (>3 m)
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10.6 Environmental Factors that Affect Wildlife

Microhabitat heterogeneity of radioactivity was as large as tenfold (Fig. 10.9). The

long, low, and internal exposure to radiation (ECRR 2010) by wildlife depends on

the species, on the behavior of individual animals, and on where and when it is

present at which microhabitat. The difference in microhabitat radiation caused by

the direction with respect to F1NPP can affect these animals incidentally. It is first

necessary to determine the individual exposure as much as possible or to sample as

many individuals as possible to account for the individual variation. Environmental

factors, which were caused by F1NPP accident and thought to relate to wildlife

fitness change, include radioactivity as well as the numerous interactive changes.

Both of these environmental factors have a direct and indirect effect, and sometimes

their effects cascade through food webs (Hallmann et al. 2014). At least in the early

years of 2011 and 2012, there seemed to be a notable decrease in butterfly fitness in

the contaminated areas of northern Abukuma highland (Hiyama et al. 2012; Møller

et al. 2013). I tried to catch butterflies at highly contaminated areas such as at

Akaugi and Omaru (Fig. 10.4) during the 2012 summer, but I could not find any.

Then, I found some in the summer of 2013, and more in 2014. Butterflies and some

other insects are an important food resource for insectivorous birds, too. Human

activity, including cultivation of the agricultural land, cutting timbers, hunting, and

collecting woods, mushrooms and bamboo shoots, has stopped in the high contam-

ination areas and in some parts of the low contamination areas. Most of the low

contamination areas, where people are expected to return to live in several years,

were decontaminated in an extreme manner. The soil and the lower vegetation were

removed. This resulted in a loss of several microhabitats and biodiversity at these

sites. In high contamination areas, where people are not expected to return for at

least several decades, the land has been left without human activity and some

wildlife has increased in density, because of the lack of hunting by humans. All

of the complex interactions in an ecosystem should affect the bird community, and

we should consider and detect more than the few most important factors.

Cettia diphone, for example, may have some advantage by inhabiting dense bush

at the abandoned agricultural land and secondary forest edge for a while until the

forests regrown, and some disadvantage by the fewer hymenopteran insects

(Hallmann et al. 2014) and the removal of the bush as part of the extreme

decontamination activity. As C. diphone stays close to the ground, it could be

affected by the radiation at least over the first couple of years, while the dose rate in

the air is rather high. Hypsipetes amourotis is an arboreal bird and is active within

the forest canopy. It is omnivorous and has a large home range; hence, the various

environmental changes could be neutral for this bird. Emberiza cioides is a seed-

eater and is a stable settler in its small territory. It often feeds on seeds of shorter

grasses and also on the ground, so its exposure situation resembles that of

C. diphone, except for their food feeding habits. I currently do not have enough

information about seed production in the highly contaminated area, but as the

F1NPP accident occurred prior to the rapid growth of plant shoots in spring, seed

production seemed to be less affected by the radiation.
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Phasianus versicolor is a ground dwelling bird and is omnivorous. It forages and

nests on the ground. It is a game bird. There should be multiple responses by this

species to the environmental changes. Unfortunately, there is very little information

on the wildlife in the contaminated area of Abukuma Mountains before the F1NPP

accident. It will be desirable to monitor the ecosystem and several principal wildlife

species, such as some of the dominant 10 birds (explained previously), S. scrofa and

unique primateMacaca fuscata (Hayama et al. 2013), until most of the ecosystems

and human societies regain stability in five or more decades later (Galvan

et al. 2014).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 11

Translocation of Radiocesium in Fruit Trees

Daisuke Takata

Abstract We report our findings on the translocation and distribution of

radiocesium inside fruit trees after radiocesium (Cs) was released by the accident

at the Fukushima Daiichi Nuclear Power Plant.

We examined the differences in the rooting depth of grapes and figs and the

translocation of radiocesium from the soil to the plants. Much of the radiocesium

fallout from the nuclear accident remained on the surface soil layer; however, in

environments such as orchards, radiocesium translocates more easily to above-

ground parts of trees with shallower roots than of those with deeper roots. It was

observed that if the old branches were the source of radiocesium, translocation

occurred to both the new aboveground organs, such as leaves and fruits, and the

underground parts, including pioneer roots. It was clarified that translocation from

old organs contributed a much higher proportion of accumulated radiocesium to

fruits than that from the soil. We reported that immediately after the accident,

radiocesium that accumulated on the bark quickly infiltrated inside the trees.

However, several months after the accident, it is possible that a decreased propor-

tion translocated from the outer bark to the internal parts of trees, such as the wood.

The translocation of radiocesium and potassium (K) into fruits and leaves may

show some differences. Explaining the behavior of radiocesium translocation in

perennial crops using K as an index is even more difficult than that in annual crops.

To predict the radiocesium concentrations in the harvested fruits, the concentrations

in the thinned fruits and the harvested fruits were compared. The results showed

that there is a strong correlation between the two. However, since some trees were

outliers, predictions must be made carefully.
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11.1 Introduction

Major fruit production in Fukushima Prefecture in 2013 was cultivated over 5762 ha

and produced a crop yield of 84,060 t; in terms of cultivation area, Fukushima

ranked 9th in Japan (Ministry of Agriculture, Forestry and Fisheries, Japan

(MAFF)). When itemized, the crop yield of peaches ranked 2nd (share 23 %,

124,700 t, 2013). This shows that, even after the nuclear accident, Fukushima was

still a major producer of fruits in Japan (Table 11.1). Many crops did not suffer

significant reductions to their growing area and yield; however, the shipment volume

of persimmons decreased to 1/3 in the year of the accident, and has not changed

much since then (Table 11.2). However, even crops that did not suffer decreased

shipping volumes were significantly impacted. For example, there was an increased

shipment of crops, such as peaches through agricultural cooperatives, to the market

during the year of the accident. The following factors are believed to have contrib-

uted. Sales were poor due to the consumers’ concerns over radiocesium, indicating

that direct sales and orchard sales to tourists decreased. As a response to consumer

reactions, producers changed the sales policy. Together, these factors led to an

increase in the stock volume; thus, in the year of the accident, the wholesale price

Table 11.1 Shipments, crop yields and cultivated area of Fukushima Prefecture in 2013 (from

Ministry of Agriculture, Forestry and Fisheries, Japan 2013)

Fruit trees Ranked Cultivated area (ha) Crop yields (t) Shipments (t)

Peach 2nd 1780 29,300 27,100

Apple 6th 1380 26,800 23,500

Persimmon 5th 1340 3790 3790

Japanese pear 4th 974 19,800 18,300

Grapes 13th 288 2960 2960

Table 11.2 Changes in shipments and crop yields and cultivated area of peach and persimmon in

Fukushima Prefecture (from Ministry of Agriculture, Forestry and Fisheries, Japan 2013)

Peach Persimmon

Year

Cultivated

area (ha)

Crop

yields (t)

Shipments

(t)

Cultivated

area (ha)

Crop

yields (t)

Shipments

(t)

1990 2610 40,200 37,600 1350 10,200 8270

2000 1800 31,500 29,400 1420 11,000 8670

2004 1750 30,700 28,400 1430 13,500 11,200

2008 1790 31,800 29,400 1420 16,100 13,500

2009 1790 30,100 27,900 1410 13,600 11,300

2010 1780 28,200 26,200 1400 14,000 12,000

2011a 1780 29,000 26,500 1390 4550 3540

2012 1780 27,500 25,200 1350 4480 3390

2013 1780 29,300 27,100 1350 4890 3790

2013 in

Japan

10,700 124,700 114,100 22,300 214,000 177,400

aAccident year
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dropped when compared to the previous year (Table 11.3). However, the stock

volume returned to the pre-accident value in the following year, leading to a certain

level of recovery in the wholesale price. Prices have shown some stability in the

years following the accident.

However, compared to other crops, such as rice, there have not been many

studies conducted on radiocesium translocation in fruit trees since the nuclear

accident. Thus, there are still many factors that need to be determined. In a previous

publication (Takata 2013), the impact of radiocesium on the translocation and

distribution inside fruit trees was investigated. The behavior of radiocesium inside

fruit trees after the nuclear accident differed to that found after the Chernobyl

accident. It was thought that significant effects occurred because at the time of the

accident many deciduous fruit trees had not yet flowered or begun producing

leaves. Although the accident occurred prior to the growth of leaves and fruits,

radiocesium was detected in fruits at the time of harvest. In the year of the accident,

the contribution of radiocesium fallout in soil to translocation from the roots was

much lower than from aboveground parts. Therefore, we considered the possibility

that radiocesium adhered to aboveground organs, such as the trunk and primary

scaffold limbs, translocated to the inside of trees via direct deposition on old organs

in aboveground parts. Translocation pathways to fruits are most likely due to

translocation from old aboveground organs and absorption from the soil through

the roots. However, the relative contribution of these two pathways is unclear. In

addition, in single annual crops, the behaviors of radiocesium and K showed a

strong relationship. Thus, the behavior of K can be a measure of translocation;

therefore, application of K to reduce translocation is being undertaken. However, it

is difficult to examine all the radiocesium behaviors in relation to K in perennial

fruit trees, particularly when radiocesium is already present inside the trees.

In this chapter, we focus on the report from the previous publication in order to

discuss the relationship between radiocesium and K in terms of the behavior of

radiocesium inside the trees and in orchards.

11.2 Pathways of Radiocesium in Fruit Trees

11.2.1 Absorption from Soil

As the distribution of radiocesium in soil after nuclear accident was defined, it

became clear that there was a large proportion of radiocesium in the surface layer of

soil in orchards (Takata et al. 2012c, d). We demonstrated that, even in this

condition, the amount of radiocesium translocated from the soil to mature peach

trees in the year of the accident was minimal compared to the amount directly

absorbed from aboveground parts (Takata et al. 2012b). The survey of transfer

factors of fruit trees, conducted after the Chernobyl accident, showed that this does

not mean that there is no translocation from the soil in orchards (IAEA 2003).

Furthermore, it is possible that a large amount of radiocesium may be absorbed
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from the soil surrounding small (young and recently transplanted) trees, with a

rapid increase in dry matter.

Among the tests to determine the transfer factors affected by the Chernobyl

accident, a survey of the planting area was conducted in undisturbed areas, while

reproduction tests in pots were conducted in soil with uniform radiocesium con-

centrations. The differences in the conditions may be the cause for the large

discrepancy in transfer factors, even in the same tree species. In vegetable cultiva-

tion, radiocesium adhering to the soil surface is stirred during tilling (Oshita

et al. 2013). However, orchard soil is not tilled, so it is thought that homogenization

with the lower soil layer does not occur. In fruit trees, the distribution of roots with

depth varies depending on the tree species, variety, and rootstock variety. There-

fore, it is important to clarify the level of radiocesium translocation to fruit trees

taking into consideration the variations in root distribution and heterogeneity of the

soil pollutant. However, no such report is available. Therefore, we investigated

translocation of radiocesium inside fruiting trees, shallow-rooted figs and deep-

rooted grapes, located in an area where radiocesium was present only in the soil

surface or in the lower soil layer, and we compared the organ volume distribution

with naturally-occurring 40K.

We tested 3-year-old ‘Campbell Early’ and ‘Muscat Bailey A’ grapes (Vitis.

spp.), and 2-year-old ‘Houraishi’ figs (Ficus carica L.) in 4.0 L pots. These plants

had been cultivated in a closed, environmentally controlled greenhouse before the

nuclear accident. In March 2012, the trees were replanted into 7.0 L pots, and the

radiocesium concentrations in the soil were adjusted. To adjust the radiocesium

concentration in the soil, we used orchard soil (sandy loam) from Date, Fukushima

Prefecture, and Tokyo, and uncontaminated commercial soil (Akadama soil and

mulch). For example, for ‘Campbell Early,’ sections with a uniform concentration

Table 11.4 137Cs concentration in pot soil (from Takata et al. 2013b)

Soil 137Cs concentration (Bq/kg – Dry weight) Soil 137Cs content

(Bq/pot)Cultivar 0–5 cm depth 5–15 cm depth Homogeneous

Grapes

Campbell early

0–5+ 833.9� 1.9 4.7� 0.0 258.8� 1.8 655.3

5–15+ 2.0� 0.0 938.7� 1.7 618.8� 0.0 1543.6

Homogeneous 576.4� 7.1 609.1� 0.7 592.2� 5.8 1665.1

Muscat bailey A

0–5++ 1006.5� 0.8 2.0� 0.0 293.4� 18.7 765.9

0–5+ 467.4� 1.1 2.0� 0.0 154.2� 9.9 390.3

5–15+ 2.1� 0.2 483.5� 0.1 307.5� 10.0 746.7

Fig

Houraishi

0–5+ 4068.6� 131.1 3.9� 0.6 1450.3� 51.5 3521.4

5–15+ 1.5� 0.6 4208.1� 138.2 2818.4� 103.0 6355.4
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were established: a high concentration of radiocesium in the soil 0–5 cm (surface

layer; 0–5+), and the 5–15 cm (lower layer; 5–15+) (Table 11.4, Fig. 11.1). At 5 cm,

where the concentration changed, three layers of water-soluble packaging paper

were placed to delineate the boundary. Similar treatment sections were established

for the ‘Muscat Bailey A’ grape and ‘Houraishi’ fig. The concentration of 40K in the

soil was about 300 Bq/kg DW. After cultivation, the trees were divided into fruits,

leaves, shoots, old branches (1–3-year-old branches, including rootstock), and

roots. The dry weight was measured and concentrations of 137Cs and 40K were

measured. In the two varieties of grapes and figs, the dry weight of roots from 0 to

5 cm was lower than that from 5 to 15 cm (Table 11.5). The proportion of 0–5 cm

roots was higher in figs than in grapes (Fig. 11.2). The weight of the 0–5 cm pioneer

roots of grapes was less than that from 5 to 15 cm. However, for figs, it was higher

than that for 5–15 cm roots. Based on these results, we conclude that fig roots grew

more vigorously at shallower depths than grape roots, so these plants would be

suitable for comparing the effect of root distribution with depth on radiocesium

uptake.

After converting the concentration of 137Cs in fruits to per fresh weight (Bq/kg

FW), the value was divided by the concentration in the soil (Bq/kg DW) to obtain

the transfer factor. The 137Cs concentration in the soil was obtained by homoge-

nizing the soil from 0 to 5 and 5 to 15 cm depths unless the soil was uniformly

contaminated. In addition, the pioneer root weight was obtained by subtracting the

root weight of individual roots, which were dissected separately prior to the test,

from the root weight after cultivation (Table 11.6). Concentrations of 137Cs in the

fruits of grapes and transfer factors were higher in 5–15+ than in 0–5+, and it was

Contaminated 

soil

Non 

contaminated 

soil
Non 

contaminated 

soil

Contaminated 

soil

pumice pumice

Fig. 11.1 Test of heterogeneity of 137Cs concentration in pot soil. Left: 0–5+, right: 5–15+,

Photograph: the image of potted grape tree
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thought that 137Cs translocation to new organs, such as fruits, derived more 137Cs

from the lower soil layer. In the 5–15+ section of ‘Campbell Early’ the concentra-

tion of 137Cs in the roots was high in the lower soil layer with a high 137Cs

concentration. However, in other treatment sections, the concentrations in the

roots were not necessarily high in soil layers with high concentrations. This

indicates that the 137Cs absorbed by the roots was also accumulated in the pioneer

GrapeFig

Fig. 11.2 Rooting of acrylic potted grape vine and fig trees. Roots of fig spread only upper part,

and roots of grape spread all around

Table 11.5 Root weight in each depth of grape vine and fig trees (from Takata et al. 2013b)

Total root weight (gDW) New root weight (gDW)a

Cultivar 0–5 cm depth 5–15 cm depth 0–5 cm depth 5–15 cm depth

Grapes

Campbell early

0–5+ 7.65 25.05 3.85 5.18

5–15+ 7.92 26.27 3.87 5.23

Homogeneous 7.68 26.88 2.73 4.85

Muscat bailey A

0–5++ 7.48 26.75 2.53 3.35

0–5+ 7.63 27.23 2.60 2.73

5–15+ 7.95 26.80 2.73 3.58

Fig

Houraishi

0–5+ 15.43 24.75 7.20 5.55

5–15+ 14.93 24.40 7.18 4.35

aNew root weight¼ root weight after harvest – root weight before budbreak
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roots at different depths. This can occur in orchards, indicating that radiocesium

present in the surface soil layer was absorbed by roots in the surface layer, and was

translocated to roots in the lower layer. The proportion is unclear, so the rate at

which this occurs is unknown. However, it is likely that this increases the concen-

tration of radiocesium in the lower soil layer.

When contamination was either limited to the lower soil layer or was spread

uniform, the problem was not substantial, because in the current situation, the

contamination was limited to the surface soil layer. On the other hand, this could

be a problem during planting or transplanting. For example, at the time of

transplanting, by developing the planting area using soils from other locations

without removing the contaminated surface, there is a risk of contaminating the

lower soil layer. Fruit trees with deep roots can develop high transfer factors when

the lower soil layers are contaminated; therefore, absorption from the soil may pose

a critical problem compared to the situation when only the surface layer is contam-

inated. On the contrary, there are reports indicating that the transfer factors were

high when only the surface soil layer had high concentrations compared to when the

soil is homogenized. A previous report (IAEA 2003) using pots demonstrated that

transfer factors in the same tree species were higher under uniform concentrations

compared with the actual planting area. The issue must be sufficiently examined.

Transfer factors in the 0–5+ section for figs were similar to the values reported

after the Chernobyl accident (Marouf et al. 1992). However, the values were larger

than those for the two varieties of grapes. We believe that our test can reproduce the

results of obtained by examining the actual planting areas, because it reproduces the

significant contamination levels in the surface soil layer. On the other hand, the

concentration of 137Cs in new organs in the 5–15+ section was lower than that in the

0–5+ section (Table 11.4). Since such variation was noted in the 0–5+ section of

figs, although the total 137Cs volume in the soil was lower than that in the 5–15+

section, it is thought that in figs the ratio of 137Cs translocated to new organs, such

as fruits, was derived from the 137Cs present in the surface soil layer which was

high. This is also evident from the transfer factors. Transfer factors for the 5–15+

section had values one order of magnitude lower than the 0–5+ section. It is

believed that the following aspects are related to the differences in the transfer

factors of figs caused by the differences in the depth of the contaminated soil:

(1) the distribution of fig roots was shallow, (2) the weight of roots in the surface

layer was higher than that for grapes, and (3) the weight of pioneer roots was high

(Table 11.5). In other words, the amount of rooting of pioneer roots, which play a

major role in element absorption in the soil, was low in the lower soil layer, and

high in the surface soil layer, leading to the different absorption of 137Cs.

The changes in 137Cs and 40K were calculated in the organs of two varieties of

grapes. These were obtained by multiplying the nuclide concentration by the organ

volume to find the content per organ, then subtracting the pre-test (pre-sprouting)

nuclide content from that value. In this test, each test subject was cultivated in a

closed space before the accident, and had not been exposed to the fallout. In

addition, 137Cs was measured after homogenizing all the parts in another sample

under the same conditions prior to the test, and the results were below the detection

limit. Therefore, the 137Cs content prior to the test was assumed to be 0. The
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changes in 137Cs in organs showed the same trend as in the 137Cs concentration

previously discussed. This indicates that there was no difference in tree growth due

to the different treatments. There was a 60 % or more increase in 40K in fruits for

each treatment. Evidently, the changes in 40K and 137Cs were notably different. In

this test, the change in 40K in the old branches was negative (Fig. 11.3). This is

thought to be related to the fact that K in the old branches was quickly used to build

new organs after sprouting. On the other hand, at the time of the test, 137Cs was not

present inside the trees, and was not used in the early growth. Because of this, in

fruits that have a large K requirement, an extreme difference between 137Cs and 40K

occurred. The difference in the rates of 137Cs and 40K in fruits may be affected by

the absorption from the soil and by differences in translocation to the aboveground

parts. However, this is unclear based on the categories of this test.

Compared to other tree species, it is believed that the radiocesium absorbed by

shallow-rooted species is high when the 137Cs concentration in the surface soil layer

is high. This seems to be relevant in detecting radiocesium in blueberries in

Fukushima and Ibaraki prefectures. However, trees in the outdoor planting area

already have 137Cs internally, so the behavior of radiocesium cannot be explained

simply based on translocation from the soil. Thus, in order to determine the

behavior of radiocesium in perennial fruit trees, it is necessary to examine the

radiocesium translocation in the old organs, and not just in the soil.

11.2.2 Translocation from Aboveground Old Organs

In the previous section, we discussed translocation of radiocesium from the soil.

However, it is necessary to examine whether the contamination source of

radiocesium in fruits may already be present inside the trees. Based on the test
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that used trees where only the soil surface was covered prior to the accident, the

amount of radiocesium that was translocated from the underground to aboveground

parts after the accident was so small that it was barely detectable. It is clear that the

majority of radiocesium was directly absorbed as it adhered to the tree at the time of

the fallout. Furthermore, when contaminated peach trees were planted and culti-

vated in uncontaminated soil, radiocesium translocated from old organs to new

organs, including fruits. The distribution inside the trees showed a high concentra-

tion in the primary scaffold limbs and the main trunk. Investigating how the

radiocesium present in the old branches of trees is translocated inside the trees at

the time of cultivation is just as important (or more so) as investigating transloca-

tion from the soil. To study this aspect, tests have been conducted by painting leaves

with radiocesium (Zehnder et al. 1995; Carini et al. 1999); however, there have

been no reports on the translocation of radiocesium from branches to new organs.

Moreover, the distribution of radiocesium in the early growth of new organs cannot

be clarified by painting leaves with radiocesium. Thus, to determine the transloca-

tion to other parts of the trees when the contamination source is assumed to be only

the old branches, the branches of grapes from planting areas that experienced the

fallout were grafted to uncontaminated trees, and the distribution of 137Cs within

the uncontaminated trees was observed at the time of harvest. Hence, the translo-

cation from old organs was investigated.

One-year old branches were sampled from ‘Kyoho’ grapes planted in an orchard

in Fukushima, and were adjusted to a length of 25 cm and 3 buds. Each branch had

been grafted to 1-year-old branch parts of ‘Kyoho’ grapes (4-year-old, 10.0 L potted

trees, rootstock cultivar is ‘101–14’) cultivated in a closed greenhouse before the

accident. Four trees were selected from those with successful grafts and with

confirmed fruiting, and were used as samples in the test (Fig. 11.4). Trees were

year old 
Contaminated

1- -

branch 

Non 
contaminated 

soil

pumice

Non Contaminated 

trees

Fig. 11.4 Shifts of 137Cs from scion to other organs in grapes
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dissected at harvest time, and 137Cs was measured in each part (Fig. 11.5). The

scion was divided into bark and wood, and these were measured. The scion and

uncontaminated tree prior to the test were similarly tested for the concentration of
137Cs concentration and content.

Fig. 11.5 Photographs of Shifts of 137Cs from scion to other organs in grapes. (a) at grafting,
(b) flowering before 1-week, (c) mature fruit (limit the number of flowers, so fruit was smaller than

usual)
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At harvest time, among the concentration of 137Cs in each part of a tree, the

highest value was found in the scion when the scion was the source of contamina-

tion (Fig. 11.6). However, 137Cs was detected from other parts as well. The

concentration of 137Cs in new organs positioned above the contaminated scion

was the highest in leaves, followed by fruits and then shoots. This was in agreement

with the results obtained from grapes cultivated under vinyl covers in the southern

region of Fukushima Prefecture (Takata et al. 2012c). It is believed that the

concentration of 137Cs tends to be high in leaves. The results obtained for old

branches, rootstocks, and roots positioned below the scion showed that the values

were similar in roots and rootstocks, and old branches had low values. The

hypertrophy of old branches was not observed in this test; therefore, it is thought

to play a role in the pathway for translocating 137Cs underground, instead of storing
137Cs, and thus, low 137Cs concentrations were observed in the old branches. In

rootstocks and roots, it is possible that accompanying the appearance of pioneer

roots and their hypertrophy, that 137Cs stored in new branches was translocated,

leading to the similar concentration observed in the fruits. We transplanted con-

taminated peach trees to uncontaminated soil and investigated the translocation

from the old organs (Takata et al. 2012e, 2014b). The concentration of 137Cs in

pioneer roots was higher than that in the leaves. Grape roots used in this test were a

combination of both the old roots that existed prior to sprouting and the pioneer

roots that appeared after sprouting. Due to the browning of the roots, identification

was impossible, so all roots were grouped together. However, since concentrations

were also high in the pioneer roots in grapes, it is thought that this led to high

concentrations in the whole roots.

When the scion was divided into bark and wood, the concentration of 137Cs in

the bark did not change much from pre-sprouting to harvest time, but the concen-

tration in the wood decreased to 56.1 % (details are provided in the next section).

However, according to a study on the 137Cs concentration in peach bark and wood

over time, the 137Cs concentration in the wood temporarily decreased after

sprouting, and continued to decrease until harvest (Takata et al. 2013c). Grapes

also use stored nutrients to develop new organs immediately after sprouting. Since
137Cs quickly translocated to other organs, similar to other stored nutrients, we

believe that the concentration in the wood was low at harvest in this test. In the
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wood, 19.5 % of 137Cs was redistributed to the other organs. Similar to the

concentration results, it was mostly redistributed to leaves, rootstocks, and roots

(Fig. 11.7).

11.2.3 Are Transfer Factors in Fruit Trees that Use Soil

Concentration as a Guideline Important?

Fruit trees are agricultural products, so radionuclide concentrations in the edible

parts are important, and investigating the translocation to the fruits of grapes is

fundamentally important. However, transfer factors studied in the existing tests

examined translocation from the soil to fruits, so they cannot be directly compared

to the proportion of 137Cs in old branches translocating to fruits, as was examined in

our current tests. Thus, we attempted to compare translocation from the soil to fruits

with the translocation inside the trees to fruits. Transfer factors from the soil varied

greatly in grapes depending on the conditions. According to previous reports, the

transfer factor was assumed to be 0.00079, a value widely accepted in Japan (MAFF

2011). Let us assume that the 137Cs concentration in the soil was uniformly

10,000 Bq in the planting area. Then, the concentration in fruits was 7.9 Bq/kg

FW. If we express this value per dry weight of the fruits in order to compare with

our test, we obtain 44.1 Bq/kg DW. Since the 137Cs concentration in the fruits in this

test was 6.0 Bq/kg DW, due to the absorption rate from the soil, the 137Cs

concentration in the soil must be 1359.5 Bq/kg DW in order to reproduce this

value. Furthermore, if we assume that it was planted in the soil with a capacity

similar to our test (6.0 kg dry soil), the total 137Cs content in the soil would be

approximately 8157.0 Bq equivalent. However, the scion concentration in this test

was 230.0 Bq/kgDW, which is only about 1/6 of the calculated required concen-

tration in the soil (1359.5 Bq/kg DW). Furthermore, in contrast to the 11.2 Bq

equivalent 137Cs content in the scion, the required 137Cs content in the soil would be

8157.0 Bq equivalent, 728 times the total amount needed in branches. Therefore,

compared to the radiocesium in the soil, the radiocesium present in the branches has

a much higher contribution to the translocation of radiocesium to the fruits, and

therefore, this needs to be carefully monitored in the future.

If the translocation of radiocesium from the bark to the internal parts of trees is

reduced, it is possible that the proportion of radiocesium derived from soil detected

in fruits and leaves will gradually increase. However, because only a few years have

passed since the accident, it is important to focus on the presence of radiocesium

inside the trees. It is unclear how many years it takes before the contribution from

the soil becomes more dominant, or even whether the condition changes at all. If the

changes in fruit concentrations reach a state of equilibrium, it may be used as an

index. In any case, a long-term survey is necessary.
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11.2.4 Temporal Changes in the Concentration, Especially

Translocation from the Bark

In peach trees 4 months after the accident, radiocesium was present at a higher

concentration in the outermost layer of the bark than in the soil (Takata et al. 2012a,

d); thus, radiocesium absorbed from the aboveground parts of trees was reported to

be higher than radiocesium absorbed from the soil through the roots (Takata

et al. 2012b). Furthermore, in the previous section, we mentioned that the

radiocesium concentration in the bark did not change much, and that the

radiocesium concentration in the wood decreased. From these results, understand-

ing the changes in radiocesium in the old branches is as important as finding the

transfer factors from the soil in order to sustain future fruit tree production.

Therefore, here we present changes observed in radiocesium concentrations in

peach bark and wood over time.

Two-year-old branches (3-year-old branches in 2012) from three trees were

sampled from 6-year-old ‘Campbell Early’ peach trees (Prunus persica

L. Batsch) in a planting area in Tokyo (andosol), every 2–3 months from July

2011 to November 2012. A part of the sampled bark was divided into the outer and

inner bark with the cortical layer as the boundary. For each 10 cm length of the

branch, radiocesium and 40K contents were determined.

Radiocesium concentrations in the wood did not change in 2011 (Fig. 11.8,

right), but decreased from February to May 2012, around the time of blooming. The
40K concentration increased from summer to fall in both years. It is believed that the

following factors are related to this trend: (1) with soil as a rich source, 40K is

translocated to the aboveground parts through the roots and is then accumulated in

the wood, which plays the role of a storage organ; and (2) to enhance this

accumulation, fertilizer containing K was applied in August as a topdressing after

the harvest. Around the time of blooming in 2012, the 40K concentration decreased

Fig. 11.8 Seasonal change in radiocaesium and 40K concentration of peach lateral shoot (from

Takata et al. 2013c). left: bark, right: wood, n¼ 3
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similar to the radiocesium concentration. Although the concentration of 40K in the

bark showed seasonal variation, it changed by roughly 200 Bq/kg DW (Fig. 11.8,

left). On the other hand, the radiocesium concentration decreased with time since

July 2011 when the survey started. A gradual decrease was noted in 137Cs, which

has a long half-life. Contributions from factors other than physical attenuation are

likely to be significant. These factors include spontaneous peeling of bark and the

translocation of radiocesium in the bark to other organs. We discuss the possibilities

of these two factors below.

We can estimate bark peeling as follows: the radiocesium concentration in the

bark does not change much during the fruit-growing period and the winter. How-

ever, it decreases during autumn when there is active nutritional development. This

coincides with the period when parts of the outer bark peel easily as old branches

swell. It is possible that the concentration of Cs decreased in association with this

phenomenon. To clarify this point, the bark was divided into the outer and inner

bark, and 137Cs was measured. The radiocesium concentration in the outer bark

decreased from July to November, then November to May, in both years (Fig. 11.9,

left). Three factors possibly affecting this trend are: (1) translocation of radiocesium

to the inner bark, (2) peeling of parts of the outer bark, and (3) the dilution effect

of radiocesium to the outer bark due to the hypertrophy of the cortical layer.

Epidermis Inner bark
Epidermis Inner bark

Wood

Bark

Fig. 11.9 Seasonal change in radiocaesium concentration of peach bark (from Takata

et al. 2013c) left: epidermis, right: inner bark. *: indicate significant difference compare with

last date by t-test (P¼ 0.05)
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We can assume that if radiocesium in the outer bark is translocated to the inner

bark, the concentration within the inner bark and wood would increase; however,

radiocesium concentrations in the inner bark and wood did not increase; hence, this

possibility is unlikely. Therefore, we can assume that it is due to peeling of parts of

the outer bark or dilution due to the development of the cortical layer. However, to

quantitatively understand the translocation of radiocesium from the outer bark, it

must be examined after determining the level of outer bark peeling and cortical

layer development. Thus, it cannot be determined solely based on our results. In

addition, the change in the concentration of radiocesium in the whole bark is similar

to the change of 137Cs concentration in the outer bark; therefore, it was considered

to be easily influenced by the changes in the outer bark at higher concentrations.

The radiocesium concentration in the inner bark decreased significantly from

July to November 2011, but showed no change in 2012 (Fig. 11.9, right). In 2011,

there was a possibility that the radiocesium in the inner bark translocated to the

inner organs (wood), or the outer organs (the outer bark). However, since

November 2011, the concentration in the inner bark did not change much; therefore,

it is possible that there was little translocation from or towards the inner bark. It is

possible that some changes occurred in the permeability within the bark, such as the

form of radiocesium, following the accident.

If the decreased concentration of the outer bark was due to the peeling of the

bark, peeling organic matter containing a large amount of radiocesium may have

re-adhered to new organs, such as leaves and fruits. There are many unknowns

about the translocation of radiocesium derived from organic matter, such as bark, to

fruits after it re-adheres to leaves and young fruits. However, it is difficult to wash

the pericarp surface layer of fruit trees, such as peaches, prior to shipment. Thus, for

such fruit trees, manual removal treatments, such as cleaning the bark positioned

closest to the fruits and shaving the outer layer of bark, will lower the risk of

directly contaminating the surface of fruits through secondary adherence.
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The nuclide content per 10 cm of branch was obtained by multiplying the organ

concentration by organ weight (Fig. 11.10). The 137Cs content in the bark showed a

gradual decreasing trend, similar to the change in 137Cs concentration. The 40K

content was also similar to the 40K concentration, but was higher in 2012 than 2011,

and showed large variability. This was thought to be due to hypertrophy of the bark

and difference in the level of hypertrophy depending on the part. The 137Cs content

in the wood was lower than the 40K content, but the manner of change in 2011 was

similar to that of 40K. In May 2012, the 137Cs and 40K contents in the wood

decreased for a period, and then increased again in the autumn. We believe that

the increase in the weight associated with the hypertrophy of the wood played a

major role in the increase of the nuclide content of the wood in the autumn in both

years. However, the level of increase was different each year, and 137Cs showed a

lower value compared to 40K in 2012. This is likely because the portion of

radiocesium that decreased in the inner bark in the fall and winter of 2011 was

translocated to the wood, while such translocation did not occur in 2012. Thus, the

level of increase compared to 40Kwas different each year. Therefore, in 2012, when

there was no translocation of radiocesium from the inner bark, the increased

radiocesium in the wood was likely to have derived from the soil. Thus, it is

possible that there is a difference in the translocation of 137Cs and 40K to the

aboveground parts from the current orchard soil. In particular, it is said that the

radiocesium was high in the surface soil layer (5 cm) (Shiozawa et al. 2011), but the

roots of peaches are often at 5 cm or deeper, so it is assumed that 137Cs, compared to
40K, was not absorbed as much from the soil.

Based on these results, the radiocesium concentration in the peach bark

decreased 2 years after the accident, with a decreasing trend even for 137Cs,

which has a long half-life. The main reason for this is the decreasing effect of

peeling outer bark where radiocesium had accumulated. In the previous section, we

noted that the concentration in the wood significantly decreased, but the concen-

tration in the bark did not change much. In addition, considering that the concen-

tration in the inner bark barely changed 8 months after the accident, as shown in this

section, it is possible that the translocation of radiocesium to the inner parts of trees

from the outer bark becomes more difficult as time passes since the accident.

11.3 Prediction of Mature Fruit Radiocesium
Concentration

In some regions in Japan, fruit shipment was self-regulated even if the concentra-

tion was below the regulatory requirement in the years following the accident.

Recently, a system that measures the radiocesium concentration in agricultural

products was established. For example, rice produced in Fukushima prefecture is

shipped after a full inspection is conducted. However, for fruits with a short shelf

life, shipping after a full inspection could greatly increase the disposal rate.
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Therefore, it is expected that a system will be established in which the radiocesium

concentration of the harvested fruits is predicted prior to harvest. In this chapter, we

have been discussing the translocation of radionuclides inside trees with a focus on

radiocesium. It is still difficult to fully understand the changes in concentrations in

the actual fruits only based on the existing results.

When predicting the radiocesium concentration in the fruits, although there is an

index such as transfer factors, numerical estimates vary greatly in the literature,

even for the same fruit. The transfer factors of fruits may vary depending not only

on the soil characteristics but also on the condition of trees, such as their age and

degree of pruning. However, the factors that affect the coefficients are still

unknown. Furthermore, as discussed in the previous section, the effects of direct

infiltration of radiocesium from the fallout on the aboveground parts on the

concentration of radiocesium in the fruits are more significant than the effects of

absorption from the soil through the roots. The existence of radiocesium that

directly infiltrates trees like this makes it difficult to predict the concentration in

the harvested fruits based on the radiocesium concentration in the soil. Incidentally,

the concentration of radiocesium in peach fruits in the accident year was shown to

have decreased as the fruits matured (Sato 2012). If it is true that the concentration

in the fruits decreases as the fruits mature, it will be possible to predict the

radiocesium concentration in the fruits prior to their harvest.

11.3.1 Fruit and Leaf Radiocesium Concentration

In this section, we study the changes in radiocesium concentration in fruits in the

year after the accident during the fruit growth period. We sampled ‘Akatsuki’

peaches (Prunus persica L. Batsch.) planted in a commercial growing field on

Ryozen, Date City, Fukushima Prefecture. Over time, we sampled fruits and leaves

from 15 days after full bloom to harvest time in 2012. From each tree, 10–50 fruits

were sampled, while 50 leaves in mid-position on shoots were randomly sampled

from the trees. The concentrations of 134Cs and 137Cs per dry weight of fruits were

both at their highest 15 days after full bloom, they decreased from 30 to 50 days

after full bloom, and then remained nearly constant until the mature stage

(Fig. 11.11). Changes in 134Cs and 137Cs were similar during the fruit growth

period, and 134Cs changed to about 70 % of 137Cs. The 40K concentration in the

fruit was at its highest 15 days after full bloom, similar to the radiocesium

concentration. It decreased after that, but the ratio by which it decreased was

different. In other words, although the concentrations of 137Cs and 40K were nearly

identical 15 days after full bloom, these values greatly diverged from each other 30

+ days after full bloom. The radiocesium concentration in the leaves 15 days after

full bloom was higher than that in other periods. On the other hand, the 40K

concentration in the leaves increased from 15 to 60 days after full bloom and

gradually decreased thereafter. In the existing reports, there are planting areas

where the total K concentration in peach leaves increased from 30 to 60 days
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after full bloom (Takano 2010). It has also been reported that the concentration

decreased gradually from 60 to 120 days after full bloom. The 40K in the leaves in

our report behaved similarly. Based on these findings, it became clear that there

were times when the translocation of radiocesium and 40K to fruits and leaves

differed. The radiocesium concentration in the fruits cannot be estimated solely

from a simple ratio calculation (Cs/K ratio) based on the K concentration. In

addition, we conducted similar surveys in the same planting area in 2013 and

2014. The changes in the radiocesium concentration during the same period showed

similar results (unpublished data). On the other hand, the changes in the K concen-

tration showed significant variation depending on the year, and the 137Cs concen-

tration in the harvested fruits showed a 1/3 to 1/4-fold decrease after about 1 year.
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11.3.2 Comparison of the Mature Fruit and Thinning Fruit

Compared to radiocesium, 40K sometimes showed a different modality in the

leaves; hence using these values to predict the concentration in harvested fruits is

difficult. On the other hand, since the year of the accident, the radiocesium

concentration in the peach fruits decreased with maturity. Therefore, from each

orchard, we sampled 3 ‘Akatsuki’ trees (from 5- to 24-years old) from each of the

24 peach orchards in Fukushima Prefecture at 60 days after full bloom (which is the

thinning time) and at maturity. Then we examined the possibility of predicting the

radiocesium concentration in the mature fruits using thinned fruits. In Japanese

peach production, the amount of fruits is adjusted through steps such as disbudding,

deblossoming, and primary and secondary thinning. Sampling fruits during these

periods may be less labor-intensive than separately sampling fruits. Therefore, for

the sampling period, we chose 60 days after the full bloom as the hypertrophy of

fruits would be in progress and the Bq per fruit starts to increase (Fig. 11.12).

Additionally, consideration was given in this test to the moisture condition of peach
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fruits changing with the weather, conditions of the planting area, and days passed

since sampling. The radiocesium concentration was expressed on a dry weight basis

(Bq/kg DW). Figure 11.13 shows the relationship of 137Cs between the harvested

fruits and fruits sampled at the time of thinning 60 days after full bloom for all

72 trees. When 137Cs concentrations of thinned and matured fruits were compared,

a significant and strong correlation was noted. Based on that, it is possible to

estimate the concentration in the harvested fruits by measuring the radiocesium

concentrations in the thinned fruits 60 days after full bloom. However, to predict

the safety of the harvested fruits by actually using the thinned fruits, it is

more important to know how many trees exist for which the concentration in the

harvested fruits is higher than in the thinned fruits, than it is to calculate the

predicted radiocesium concentration of the harvested fruits by substituting values

into the obtained correlation equation. Therefore, we added a solid line showing the

Y¼X relationship. Values plotted above and to the left of this solid line indicate

that the 137Cs concentration is higher in the harvested fruits than in the thinned

fruits. Thus, 9 out of 70 trees were “outliers” that had higher values in 60th-day

thinned fruits than in the matured fruits. To maintain safety, it is important to

eliminate such outliers. As a countermeasure, using a method to accelerate the

measurement period of the thinned fruits may be an option. As mentioned earlier,

the radiocesium concentration is higher in fruits 30 days after full bloom than

60 days after full bloom. Thus, it may be that the accuracy of the safety prediction

for harvested plants may be increased. However, in this case, the 137Cs concentra-

tion was higher than that in our samples from 60 days after full bloom, although the

radiocesium content per fruit was low. Therefore, it is important to note that the

number of sampled fruits at the time of measurement was quite high, and that the

change in concentrations in the fruits should be considered because it is a period
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when the variations in temperature and planting area affect the conditions of fruit

growth. On one hand, the concentration of the harvested fruits cannot be the same or

above that of the concentration 30 days after full bloom, yet there is a possibility of

overestimating the concentration of the harvested fruits. Thus, for trees that

surpassed the regulatory required value at 30 days after full bloom, we must

consider the necessity of retesting at 60 days or later. The second possible coun-

termeasure is a method using safety coefficients that produces higher safety esti-

mates by adding a coefficient to values such as calibration curves. For example,

when setting Y¼X+10 without changing the slope of the curve, 68 out of 70 trees

were at or below the level of thinned fruits + 10.0 Bq/kg DW, so the number of

outliers was reduced. Although we must carefully examine the value added as a

safety coefficient, it is very unlikely that the fruits from the trees that had suffi-

ciently low radiocesium concentrations in the thinned fruits would suddenly present

extremely high values at the time of harvest; thus, it is worth considering. Further-

more, by measuring the radiocesium concentration of the thinned fruits ahead of

time, compared to measuring everything during a short harvest period, less con-

centrated labor periods can be achieved. Additionally, if one attempts to use the

obtained values for the following year by observing the change in one tree over

time, it is unlikely to increase compared to the previous year; therefore, it might be

possible to exclude trees with low concentrations from the measurement target in

the following year.

Next, we investigated the correlation for the same set of data for each of

24 planting areas. Out of 24 planting areas, 23 had lower 137Cs concentrations in

the mature fruits than the thinned fruits. Tanoi et al. (2013) showed that individual

variations exist in rice in a paddy field, so it is quite possible that the radiocesium

concentrations would vary in each tree in an orchard. Therefore, it is premature to

determine the concentration of the whole planting area based on several trees.

However, at least planting areas with high radiocesium concentrations can be

chosen, which can possible reduce the effort required to measure individual trees

later on. Of course, it is possible to determine the safety of trees by tests conducted

during this period, excluding the trees in planting areas with values close to the

shipment limits for radiocesium.

11.4 Conclusions

Since radiocesium is distributed on the surface layer of the soil in orchards, it is

important to focus on the translocation of radiocesium from the soil to trees when

they have shallow roots. Moreover, understanding the behavior of radiocesium in

old organs is equally significant. If the concentrations in the bark and wood are

obtained separately, a better understanding of the proportion of radiocesium

translocated to the fruits is possible, because the translocation of radiocesium

from the bark to the internal part of trees becomes more difficult as time passes

after an accident.
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We confirmed that there was a difference in the behaviors of radiocesium

concentration and 40K concentration in the fruits and leaves of peaches. Further-

more, differences can arise between the behaviors of radiocesium and K inside the

trees; therefore, it is risky to consider the relationship of radiocesium and K in

perennial crops as similar to single annual crops that have only soil as a radiocesium

source.

Comparison of the concentration of 137Cs in the fruits sampled 60 days after full

bloom with that of harvested fruits revealed a strong correlation. However, the

concentrations in the harvested fruits were not always lower than the fruits sampled

60 days after full bloom. Since trends in the planting area and the internal parts of

trees can be understood to a certain degree by measuring the thinned fruits at

60 days, this indicates that the safety could be determined through tests during

that time, excluding planting areas and internal parts of trees with numerical values

extremely close to the shipment limit.
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Chapter 12

The Effects of Radioactive Contamination
on the Forestry Industry and Commercial
Mushroom-Log Production in Fukushima,
Japan

Satoru Miura

Abstract The accident at the Fukushima Daiichi nuclear power plant in 2011 left

surrounding residential, agricultural, and forested areas contaminated with radia-

tion on a massive scale. To encourage evacuees to return to their homes and resume

agricultural practices, large-scale decontamination of radioactive zones is ongoing

in residential and agricultural areas. However, contamination of forests is extensive

and decontamination efforts have been limited by remote access, significant labor

requirements, and the considerable amount of anticipated radioactive waste. Con-

sequently, there has been no large-scale effort to decontaminate forests as there has

been for residential and agricultural land. In this paper, we examine the current

protection of forests from radioactive contamination and discuss measures required

to promote forest restoration. In addition, we consider how forest contamination

relates to radiation exposure in humans and summarize the state of the forestry

industry since the Fukushima accident. We also consider how radiation affects

forest products in Fukushima, emphasizing mushroom-log production. Finally, we

examine the challenges surrounding the reconstruction and revival of forests and

forestry in Fukushima.

Keywords Forest restoration • Hardwood forest management • Mushroom

cultivation • Mushroom logs • Radiocesium transfer
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12.1 Current Forest Contamination and Remediation
Efforts

12.1.1 External Exposure

The effect of forests contaminated with radiation on humans depends on whether

the radiation exposure is external or internal. External exposure can occur through

either close contact with contaminated timber or exposure to contaminated forest

sites during outdoor activities. The highest level of radioactive contamination found

in timber from Fukushima Prefecture was 414 Bq/kg (479 Bq/kg dry weight) and in

2012, the Forestry Agency, Japan estimated that a person living in a room made

from this contaminated timber would incur an additional 0.012 mSv per year

(Forestry Agency 2012a). This is 1.2 % of the accepted additional dose of 1 mSv

per year and would have a negligible effect on human health. However, in Japan,

there is no regulation of the radiation levels of building materials taken from conifer

forests, and therefore the Fukushima Lumber Co-operative Union has adopted a

limit of 1000 gamma ray counts per minute, using a Geiger–Müller counter, as this

is the permissible level for contaminated materials from a laboratory with radio-

isotope analysis (Fukushima Lumber Cooperative Unions 2012). This self-

regulation and monitoring of timber radiation levels is to counter and refute

unfounded concerns regarding the use of timber from Fukushima Prefecture and

to promote its distribution.

Radiation exposure sustained during outdoor activities in contaminated forests

depends on the air dose rate and time spent in contaminated areas. This is of

concern to forestry workers and decontamination crews, due to the significant

amounts of time they might spend in contaminated forests. Furthermore, contam-

inated forests will also affect people visiting for recreational activities, although

they generally spend less time in contaminated areas than forestry workers. To

ensure safer conditions, the government has enforced the Ordinance on Prevention

of Ionizing Radiation Hazards, which aims to protect workers by managing expo-

sure doses based on the air dose rate and exposure to radioactive materials in the

workplace (Ministry of Health, Labour and Welfare, Japan 2013a). For workers

other than those involved in decontamination, this law will keep occupational

exposure dosage below the limit set by the International Commission on Radiolog-

ical Protection (Valentin 2007). In addition, the Forestry Agency and the

Fukushima Prefectural government are implementing policies to reduce exposure

rates to forestry workers, such as equipping large forestry machinery with lead

shielding and using substances to reduce the air dose rate in contaminated areas

(Forestry Agency 2014a). Moreover, the Nuclear Regulation Authority is providing

safety information and countermeasures to reduce radiation exposure to people

returning home (Nuclear Regulation Authority 2013). Finally, government policy

has shifted its emphasis from estimates based on air dose rates to values obtained

from dosimeters that track individuals.
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12.1.2 Internal Exposure

Consumption of contaminated food is the primary means of internal radiation

exposure to humans. Forests in Japan produce many food products, including

sansai (edible wild plants), bamboo shoots, fruits, nuts, and wild game, but mush-

rooms are by far the most economically important forest food product (Forestry

Agency 2014f). Additionally, artificially cultivated mushrooms are the only forest

food product that is consumed on a large, commercial scale.

Immediately after the Fukushima accident in March 2011, the Japanese govern-

ment set a maximum tolerable level of radioactivity in food at 500 Bq/kg for adults

to protect against internal radiation exposure (Ministry of Health, Labor and

Welfare, Japan 2011). Prefectural governments inspected the radioactivity of

foods and reported findings to the Ministry of Health, Labor and Welfare, and the

government prevented distribution and shipping of food that exceeded the radiation

limits. This monitoring system applied to conventional agriculture as well as food

grown in forests. The Fukushima government abided by and implemented such a

monitoring system to inspect agricultural products and protect the public from

consuming excessively contaminated food. For example, rice, which is the main

agricultural product in Fukushima, was inspected bag-by-bag in 2012 to allay

consumer fears of contamination (Nihei et al. 2015). The government initiated

similar inspections at the shipment stage to ensure the safety of forest food

products, including mushrooms. However, in April 2012, the Japanese government

revised the radioactive cesium limit for general food to 100 Bq/kg (Ministry of

Health, Labour and Welfare, Japan 2012).

The Ministry of Health, Labor and Welfare, Japan set these regulations for food

in the general market, but no such guidelines were set for food produced, hunted or

gathered by individuals for their own use. This is of particular concern, as people

often collect mushrooms and sansai in the mountainous areas of Fukushima.

Shortly after the Fukushima nuclear accident, the government published informa-

tion about radioactive contamination, including a radiation map and shipping

restrictions on agricultural and forest products. This was the extent of protection

against radiation health effects for people collecting their own food. However, local

authorities have provided community centers with the equipment needed to test

radiation levels in food to provide comprehensive information regarding the impact

of radiation.

The Japanese government monitored radioactive Cs (Cs-134, Cs-137) levels in

food through market-basket samples in autumn 2012 at 15 locations nationwide,

including Fukushima. All calculated annual doses were less than 1 % of 1 mSv, far

below the permissible annual dose (Ministry of Health, Labor and Welfare, Japan

2013b). However, radioactive contamination of forests has affected people eco-

nomically and altered rural lifestyles, as forests comprise 71 % of Fukushima

Prefecture and many people make a living from harvesting forest products.

Large-scale radioactive contamination of forests is the main problem interfering

with revitalization and reconstruction following the Fukushima nuclear accident.
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12.1.3 Ecological Damage and Extent of Radioactive

Contamination

In addition to human exposure to radiation through contaminated forests and forest

products, radiation has caused ecological loss and damage. Although reports of

mutations and ecological devastation are limited, radiation has affected lycaenid

butterflies (Hiyama et al. 2012), birds and animals (Ishida 2013), and earthworms

(Hasegawa et al. 2013). Moreover, organisms have absorbed radioactive particles

from the environment (Murakami et al. 2014). This differs from the Chernobyl

nuclear disaster, after which radiation emissions devastated trees and forests over a

large area (Arkhipov et al. 1994).

In addition to damage to forests themselves, there is concern that radioactive

materials can move from forests into rivers, agricultural land, coastal waters or

residential areas. Fallen leaves blowing from contaminated forests to

decontaminated residential areas, and irrigation water from streams originating in

contaminated forests, could spread radioactivity. The government and universities

monitor contamination of forest streams and have found that such contamination is

restricted to periods of heavy rain (Forestry and Forest Products Research Institute

2012). When there is no rainfall, streams are not turbid and radioactive Cs are

nearly undetectable. However, during heavy rainfall, tumultuous water stirs up

radioactive sediment. Still, when suspended matter is filtered out, very little radio-

active Cs remain. This indicates that ionic radioactive Cs levels are negligible and

that clay particles absorb the majority of the radiation. Furthermore, the amount of

radioactive materials flowing in forest streams was found to be less than 1 % of the

total deposited material (Hayashi 2013; Takahashi 2013). Conversely, after remov-

ing contaminated leaves and other detritus from the forest floor, thereby leaving the

ground exposed, considerable amounts of radioactive soil and particulate matter

were discharged from the bare ground (Forestry Agency 2014a). This suggests that

minimizing soil movement by leaving the forest floor undisturbed and covered with

leaves and other organic material will mitigate transfer of radioactive matter from

forests to neighboring areas.

Studies indicate that forests act as reservoirs for radioactive material. Fixed-site

monitoring in forest ecosystems showed that deposition of radioactive Cs did not

change considerably from 2011 to 2013 (Forestry Agency 2014b). Following the

Fukushima nuclear accident, there were concerns that radioactive material might

spread through soil erosion in steep environments with high rainfall, characteristic

of forests in Fukushima. However, even under such environmental conditions,

through management of forests and maintenance of forest floor cover, forests will

retain the majority of the fallen radioactive material.

Compared to regions contaminated by the Chernobyl nuclear accident, areas

around Fukushima are densely populated and forestry activities are more common.

However, using forests as a sink for radioactive substances could be a viable option.

Decontamination requires collecting contaminants and although it is possible to

manage radioactive substances, it is not possible to eliminate radioactivity.
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Decontamination strategies should prioritize low-cost management to ensure that

radioactive substances do not spread until their radioactivity reaches a safe level.

12.1.4 Summary of Radiation Mitigation in Forests

Most radioactive materials in a forest remain within the forest ecosystem. While

there has been no active decontamination program for forests as there has been in

agricultural and residential areas, we have pursued means to protect human health.

For example, we understand the distribution of radioactive substances in forests and

have investigated measures to keep radiation at safe levels for people. Moreover,

we have examined how to prevent radioactive contaminants in streams from

flowing out of forests. Still, we have not addressed all issues concerning human

and environmental health, such as radiation in logs for mushroom cultivation.

Within the context of tree physiology, the problem of radiation in logs begins

with the movement of radioactive Cs into trees. After the Chernobyl nuclear

disaster, the International Atomic Energy Agency (2002) developed models to

predict the movement of radioactive substances into trees and these have since

been applied in Japan (Hashimoto et al. 2013). However, data were collected only

shortly after the Fukushima accident and additional data are required to improve

predictions. Predictions should also be species-specific, especially for species used

for cultivation of mushrooms, such as konara oak (Quercus serrata). The remainder

of this report describes the movement of radioactive cesium into broad-leaf trees

used for mushroom cultivation.

12.2 Radioactive Contamination and Mushroom
Cultivation

12.2.1 Mushroom Cultivation in Japan

In Japan, mushrooms are a commercially important commodity that are usually

artificially cultivated. There are two common methods of cultivating mushrooms:

log cultivation (Fig. 12.1a) and sawdust substrate cultivation (Fig. 12.1b). For log

cultivation, the fungal inoculum is implanted in small holes drilled in broadleaf logs

kept either outside on bare ground, or inside a specialized facility. Sawdust sub-

strate cultivation uses a mix of broadleaf sawdust and rice bran as the growth

medium and the mushrooms develop inside specialized facilities. The flavor of

log-cultivated shiitake mushrooms (Lentinus edodes) is generally preferred to those

cultivated using the sawdust method. However, the industry uses the sawdust

method more commonly; it accounts for 85 % of shiitake production (Forestry

Agency 2014c).
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Fig. 12.1 Shiitake

mushroom (Lentinus

edodes) cultures. (a)
Mushroom-log cultivation;

(b) Sawdust substrate
cultivation (Photos by

Hitoshi Neda)
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Mushroom cultivation increased gradually through the 1970s and 1980s, while

timber production dramatically declined during the 1990s, resulting in the two

industries having similar market values by the early 2000s (Fig. 12.2). In 2010,

mushroom cultivation was worth 218.9 billion yen, representing 52 % of the value

of all forestry products (Table 12.1). However, agriculture and forestry production

in Fukushima both dropped sharply after the nuclear accident, and while agricul-

tural revenue was recovering by 2012, forestry revenue, including mushroom

cultivation, took one more year to start to recover.

Mushroom cultivation depends on wood as the culture medium. Before the

nuclear accident, Fukushima Prefecture was the largest producer of wood for this

purpose. In 2009, 10 % of wood for mushroom cultivation was imported from

outside the prefecture in which the mushrooms were produced, and Fukushima

supplied most of this wood to 22 of 47 prefectures (Forestry Agency 2014d).

Hardwood production numbers reflect this, and in 2010 Fukushima Prefecture

ranked number three among prefectures in hardwood production by volume in

Japan (Table 12.2). After the nuclear accident in 2011, wood supply for mushroom

cultivation from Fukushima almost completely ceased, thus affecting mushroom

cultivation nationwide. The Forestry Agency and stakeholders in the mushroom

industry demanded an adjustment scheme in autumn 2011 (Forestry Agency 2011).

However, as of 2014, the mismatch between supply and demand had not been

rectified.

(In 100 millions of JPY)

Fig. 12.2 Economic forestry output in Japan from 1971 to 2012
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12.2.2 Contamination of Mushroom Growth Media

Mushrooms readily absorb and accumulate Cs (Kalač 2001). After the Chernobyl

nuclear accident, mushrooms were among the most contaminated forest products,

along with berries and game meat (International Atomic Energy Agency 2006).

Following the Fukushima nuclear accident, food inspections across Japan revealed

Table 12.1 Total agricultural and forestry output and the breakdown of forestry production in

Japan and Fukushima before and after the Fukushima nuclear power plant accident

(In 100 millions of JPY)

Year Agricultural

output

Forestry

output Logs

output

Cultured

mushrooms

Fuelwood and

charcoal

Japan 2009 81,902 4122 1861 2200 49

2010 81,214 4217 1946 2189 51

2011 82,463 4166 2055 2047 51

2012 85,251 3917 1933 1932 44

2013 84,668 4322 2221 2035 55

Fukushima 2009 2450 130 83 46 2

2010 2330 125 73 49 2

2011 1851 87 62 24 1

2012 2021 74 56 17 1

2013 2049 86 62 23 1

Data obtained from the Forestry Agency (Source: Statistics Department, Minister’s Secretariat,

Ministry of Agriculture, Forestry and Fisheries)

Table 12.2 Prefectures with the highest hardwood forest production in Japan in 2010 and 2012

(In 10 millions of JPY)

Year 2010 2012

Rank Prefecture Hardwood production Prefecture Hardwood production

1 Hokkaido 753 Hokkaido 649

2 Iwate 358 Iwate 346

3 Fukushima 152 Kagoshima 144

4 Kagoshima 141 Hiroshima 116

5 Miyazaki 95 Shimane 81

6 Hiroshima 86 Fukushima 78

7 Aomori 63 Miyazaki 59

8 Shimane 59 Aomori 52

9 Miyagi 53 Akita 49

10 Akita 53 Yamagata 48

Japan 2376 Japan 2062

Data obtained from the Forestry Agency (Source: Statistics Department, Minister’s Secretariat,

Ministry of Agriculture, Forestry and Fisheries)
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that wild-picked mushrooms had particularly high radioactive contamination; these

inspections detected levels above allowable limits in prefectures as distant as

Aomori and Nagano. As of autumn 2014, restrictions on mushroom shipments

from ten prefectures remained in effect (Forestry Agency 2014e) and contamination

of mushrooms was ubiquitous in eastern Japan. However, radioactive emissions

from the Fukushima accident had a 134Cs:137Cs ratio of approximately 1:1, which

had become 1:3 by autumn 2014 due to their different decay rates. However, most

of the radioactive Cs in prefectures far from Fukushima is 137Cs; often no 134Cs is

present (Yamada 2013). In such samples, the 137Cs contamination of mushrooms

likely originates from atmospheric nuclear testing in the 1950s and 1960s. The

Nuclear Regulation Authority has monitored this radioactive fallout since the late

1950s (Nuclear Regulation Authority 2014). Moreover, radioactive 137Cs also

reached Japan from the Chernobyl nuclear accident, but declined immediately to

a steady level from an initial spike.

In 2011, the Japanese government set acceptable radiation levels for food,

including mushrooms, at 500 Bq/kg, which was reduced to 100 Bq/kg in 2012. In

response to this, the Forestry Agency immediately started to investigate maximum

radioactivity levels for mushroom media to produce mushrooms below the allow-

able radiation limit. This investigation determined that the maximum contamina-

tion value for both log and sawdust media was 150 Bq/kg. However, a follow-up

study adjusted these limits to 50 Bq/kg for logs and 200 Bq/kg for sawdust (Forestry

Agency 2012b). The lower radioactivity limit for logs is due to greater variation in

this medium, although purveyors of these logs consider the limit excessive.

In 2014, a study in Nakadori, Fukushima, found 137Cs levels from 500 to 800 Bq/

kg in konara oak logs used for mushroom cultivation (Table 12.3); even the lowest

contamination levels were tenfold the allowable limit. Moreover, the study site had

a radiation contamination level of 100–300 kBq/m2 and the surveyed logs tested

would have been live trees at the time of the Fukushima nuclear accident. Regard-

less, it seems that no konara oak logs from Nakadori or Hamadori regions are

currently suitable for mushroom cultivation. Conversely, parts of the Aizu region in

western Fukushima have lower contamination levels, and subsequently minimal

production of logs for mushroom cultivation has been resumed.

The Forestry Agency published guidelines to manage log cultivation and main-

tain radioactivity within the set limits (Forestry Agency 2013). These include

washing the mushroom logs and measures to prevent them from contacting con-

taminated soils. Another experiment, immersing logs in Prussian blue solution,

which adsorbs radioactive cesium and prevents it from entering mushrooms, was

extremely effective (Neda 2013). However, this adds to production costs and may

color mushrooms blue, thereby reducing their value, rendering the technique

unviable. While producing safe mushrooms is the priority, this has negatively

affected the outlook for producers of mushroom logs in Fukushima Prefecture.
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12.3 Restoring Hardwood Production

12.3.1 Mushroom Log Production by Forest Cooperatives

Fukushima Chuo Forest Cooperative is overseeing a major mushroom log produc-

tion operation (Fig. 12.3) in the Abukuma Mountains west of the Fukushima

Daiichi nuclear power plant. In 2010, the cooperative had a membership of 8590

and 51,531 ha of private forest. Before the Fukushima nuclear accident, the

cooperative successfully focused on producing high-quality hardwood logs for

mushroom cultivation and consistently turned a considerable profit. However,

now the cooperative must wait to see how long radioactive contamination will

impede its hardwood production business.

Commercially grown konara oak and other broadleaf trees regenerate by

harvesting trees under 20 years old, as new sprouts stem from the stumps. This

coppicing method produces up to three main stems from each stump (Fig. 12.4); the

stem’s straight portions are used for mushroom cultivation, while the curved or

gnarled portions are pulverized for sawdust production. The market price of

mushroom logs is currently high, and is two- to fourfold the price of softwood

products, such as cedar timber and wood chips for paper production (Hayajiri

2013). Consequently, mushroom log production is a valuable aspect of forestry,

although after the Fukushima nuclear accident, this is not the case for the

Fukushima Chuo Forest Cooperative.

Before the Fukushima nuclear accident, the Fukushima Chuo Forest Cooperative

produced mushroom logs within 20 km of the nuclear plant. After the accident,

Table 12.3 Radiocesium concentrations in stem wood and bark, and their weighted averages in

logs used for mushroom cultivationa

Part of stem Size DBH (cm) 134Csb(Bq kg�1) 137Csb(Bq kg�1)

Stem wood Large 12.1, 13.2,

13.6

95� 5 271� 15

Medium 9.9, 10.9 93� 15 264� 38

Small 7.8, 9.2,

10.0

55� 4 159� 14

Bark Large 727� 21 2083� 71

Medium 940� 85 2657� 223

Small 1047� 190 2998� 547

Weighted average of stem

wood and bark

Large 184� 7 524� 19

Medium 279� 15 789� 42

Small 250� 69 716� 199

aMiura et al., unpublished data. Field survey was conducted in the Miyakoji area, Tamura,

Fukushima in March 2014 (deposited amount of 134Cs and 137Cs by airborne monitoring on July

2 2011 was 100–300 kBq m�2. Air dose rate was 0.33 μSv h�1 on March 18 2014)
bAverage of two or three stems of each individual sample, calculated as the average of three discs

at heights of 0.5, 2, and 4 m. Radioactivity of stem wood and bark was determined by a germanium

detector with counting error of 3 sigma
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these areas were under evacuation orders until April 2014, at which point forestry

activities could resume. Currently, the cooperative’s primary concern is whether

radioactive contamination levels of konara oak planted now will be below the

allowable limit when harvested in 20 years. Trees contaminated after the accident

undoubtedly lost their value, but predicted effects on mushroom logs harvested in

20 years will affect forest management. If prospects for future harvests are not

favorable, then a major reappraisal of forestry management and production is

required. However, if it is possible to produce mushroom logs below allowable

radiation contamination levels, then current forest management practices will

suffice. Unfortunately, we cannot predict radiation levels of konara oak grown

under current conditions.

12.3.2 Resuming Mushroom Log Production

Timber becomes radioactive when radioactive particles migrate into its tissues from

the bark or through the roots, and predicting the amount of radioactive cesium that

will accumulate in konara oak trunks over the next 20 years is necessary for the

mushroom industry. The half-life of 134Cs is 2 years, so in 20 years, it will decrease

to 1/1000 of the present level, meaning that only 137Cs is of concern. However,

currently, even this isotope alone is above total allowable radiation limits for

mushroom cultivation media.

Fig. 12.3 A coppiced forest at Miyakoji, Tamura, Fukushima. Two-year-old coppices are in the

foreground; an oak forest that has grown beyond its optimal harvesting date due to the Fukushima

nuclear accident is in the background
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Fig. 12.4 Coppicing regeneration of Quercus species (a) Mature tree; (b) New planting;

(c) Coppicing
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In regenerating coppices, 137Cs enters from the belowground stump and roots,

while in newly planted trees, the only source is through root uptake. Therefore,

contamination of newly planted trees depends on soil contamination and the tree’s

ability to absorb contaminants (transfer factors). Studies near the Chernobyl acci-

dent have found that transfer factors vary from 10 to 100-fold and depend on soil

contamination levels and characteristics, and tree species and age (Shcheglov

et al. 2001). However, data regarding how tree species and soil type can influence
137Cs uptake in Japanese hardwood trees are insufficient.

Moreover, radiation dynamics in trees regenerating from stumps are more

complex than in newly planted trees. For instance, underground portions of the

stump have also been subject to considerable contamination, which would affect

contamination of the coppices. However, there is limited information concerning

root contamination. In addition, although coppices grow more rapidly than newly

planted trees because of the considerable carbohydrate stores in the stump, 137Cs

migration rates into the coppice are unknown. Migration rates differ greatly

depending on the growth characteristics of the tree. If Cs migrates to the roots

and inhibits uptake of new cesium, then tree growth over 20 years would dilute the

Cs in above- and below-ground tissues. When considered with radioactive decay,

contamination in new coppices may be considerably lower than in trees directly

contaminated from the Fukushima accident. However, present knowledge regard-

ing radioactive contamination in hardwood trees is insufficient to confirm this

speculation.

To predict 137Cs contamination behavior in coppices, further research into trees’

absorption of Cs, its migration through the bark into the tree, and its movement and

distribution in the tree is required. Twelve years after the Chernobyl accident, ratios

of radioactive 137Cs and stable 133Cs were constant throughout pine and birch

stands (Yoshida et al. 2004). This shows that the Cs concentrations in forest

ecosystems reached an equilibrium between stable isotopes and other elements.

Conversely, since the Fukushima accident, 137Cs concentrations in konara oak and

cedar trees have not reached an equilibrium, and continue to increase (Mahara

et al. 2014). This may provide insight into 137Cs dynamics in konara oak trees, but

does not present the overall picture.

12.4 Conclusions

Harvesting logs for mushroom cultivation has been an important part of the forestry

industry in Fukushima. However, if it is impossible to produce logs with a radio-

active Cs level below 50 Bq/kg by using standard production methods, the industry

is in a perilous position and must consider significant restructuring. After 100 years,

radioactivity will naturally decay to 10 % of current levels; however, the forestry

industry cannot wait that long and must continue operations in radioactively

contaminated forests despite the associated challenges.
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Mushroom log production requires a 20-year cycle, but softwood cedar and

cypress used for timber requires at least a 40-year cycle. In Japan, there has been

commercial mushroom cultivation by the forestry industry for about 60 years;

during previous centuries, hardwood coppices were mostly sources of firewood

and charcoal. Remnants of charcoal kilns remain in various forests throughout

Japan. Previous forestry practices were long lasting, but during the energy revolu-

tion in the 1960s, change happened quickly, and mushroom cultivation is now a

major aspect of the forestry industry. In forests with radiation contamination, we

must consider implementing historical forestry practices, as forests enrich people’s

lives in many ways and we should investigate all available options. However, we

must also look to the future to make decisions regarding our livelihoods. Fukushima

Chuo Forest Cooperative’s future management policies are continually developing

and depend on further research to understand the problems associated with radio-

active contamination of forests.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 13

Radiocesium in Timber of Japanese Cedar
and Japanese Red Pine, in the Forests
of Minamisoma, Fukushima

Masaya Masumori, Norio Nogawa, Shin Sugiura, and Takeshi Tange

Abstract The distribution of radiocesium within trees in the forests of

Mimamisoma, Fukushima, Japan, was studied between 2012 and 2013 after the

Fukushima Nuclear Power Plant accident. Most of the radiocesium was contained

in the foliage and bark of the examined trees of Japanese cedar (Cryptomeria

japonica) and Japanese red pine (Pinus densiflora), although considerable concen-

trations were detected in the xylem of C. japonica. At higher positions in the trunk,

there was more radiocesium in heartwood than in sapwood. Radiocesium in the

xylem of a tree with its root system removed before the nuclear accident suggests

that most of the radiocesium was not transferred through the root system but was

likely translocated via the foliage.

Keywords Softwood species • Xylem • Radiocesium contamination • Nuclear

power plant accident

13.1 Introduction

The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused

massive emissions of radioactive substances into the atmosphere and subsequently

over a wide area of forests. Although many reports have examined nuclear mate-

rials within trees after the accident (Kuroda et al. 2013; Akama et al. 2013; Ohashi

et al. 2014), the number of samples has been limited, and an accurate understanding

requires an increased sample size. Since 2012, we have been measuring the

radiocesium concentrations in trees in Minamisoma City, north of the nuclear

power plant. The measurements have been conducted in cooperation with the
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Minamisoma City Office and the Soso District Agriculture and Forestry Office,

Fukushima Prefecture. The city covers an area of 399 km2, of which 218 km2 is

covered by forest. Approximately half of the forest is artificially planted for timber

production. This study concentrated on two timber tree species, Japanese cedar

(Cryptomeria japonica), and Japanese red pine (Pinus densiflora), which make up

3/4 of the standing timber volume of the forest.

13.2 Study Sites and Measurement of Radiocesium

We investigated five forests stands owned and managed by Minamisoma City,

locating 20–35 km NNW of the Fukushima Daiichi Nuclear Power Plant. All stands

contained 50–60-year-old plantation forests.

According to the airborne monitoring map by Ministry of Education, Culture,

Sports, Science and Technology, the minimum level of cesium 137 (137Cs) at all

sites was 300 kBq/m2 and the maximum was estimated to be up to 3000 kBq/m2 on

April 29, 2011. As an indicator of radiocesium deposition at each site at the time of

sampling, we measured the air dose rate 1 m above the ground and close to the trees

using a NaI scintillation survey meter.

The radionuclides were quantified in each sample using a germanium semicon-

ductor detector. Peaks corresponding to 134Cs and 137Cs were detected for each

sample. As 134Cs decayed naturally from 2012 to 2013, 137Cs levels were used in

the present chapter to examine the radioactivity over the 2 years.

13.3 Distribution of Radiocesium in Standing Trees

Three trees, two C. japonica and one P. densiflora, were cut down in December

2012 (21 months after the accident) and in December 2013 (33 months after the

accident), and the distribution of radiocesium on the inside and outside of the trees

was investigated (Table 13.1). Among the six trees, five trees (#4 to #8) were felled

from the same stand, and a C. japonica tree (#3) was felled from a stand with a

comparatively higher air dose rate. Both stands were on southern facing slopes and

were thinned in 2009.

To prevent soil particles contaminating the trunk after felling, each trunk was

covered with a plastic sheet to a height of 1.5 m and the tree was cut close to the

ground (Fig. 13.1A). After cutting, branches and foliage that did not touch the soil

were sampled. The sample logs for analysis were taken at seven positions of each

trunk in 2012 and at 2–3 positions in 2013 (Fig. 13.1B). The whole tree was

weighed, including the parts not sampled.

The sample logs were transported to a sawmill and cut into 5 cm disks with a

bandsaw. The logs harvested in 2012 were subsequently separated into bark,

heartwood, and sapwood. The logs harvested in 2013 were stripped of the bark at
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Table 13.1 Radiocesium content in trunks of standing trees (Masumori et al. 2015)

#

Dose rate

at the site

of the day

Tree

height

Height

to crown

Diameter

at 1.3 m Disc height

137Cs content Bq/g

Bark Sapwood

Transition

wood Heartwood

#3 Cryptomeria 3.6 μSv/h 21.7 m

14.0 m

28 cm

19 m 11.77 0.62  –

16 m 7.34 0.43  1.38

13 m 16.97 0.52  1.00

10 m 10.90 0.51  0.92

7 m 13.86 0.62  0.77

4 m 13.47 0.49  0.55

1.3 m 15.28 0.72  0.65

�0.2 m 1.08 0.30   

�0.5 m

(lateral root)

0.96 0.23   

#4 Cryptomeria 1.7 μSv/h 23.2 m

15.7 m

34 cm

19 m 8.58 0.35  0.69

16 m 4.71 0.35  0.46

13 m 5.11 0.41  0.39

10 m 4.76 0.38  0.37

7 m 3.25 0.31  0.26

4 m 3.16 0.29  0.24

1.3 m 2.43 0.30  0.32

#5 Cryptomeria 1.3 μSv/h 24.0 m

13.3 m

39 cm

19 m 2.88 0.18 0.41 1.04

10 m 2.69 0.27 0.50 0.61

1.3 m 1.96 0.36 0.46 0.49

#6 Cryptomeria 1.3 μSv/h 15.8 m

6.4 m

19 cm

10 m 5.16 0.28 0.43 0.90

1.3 m 2.27 0.27 0.61 0.98

#7 Pinus 1.8 μSv/h 22.2 m

14.6 m

28 cm

19 m 1.10 0.20  –

16 m 1.30 0.20  –

13 m 1.20 0.20  0.10

10 m 1.40 0.20  0.10

7 m 1.50 0.20  0.10

4 m 1.30 0.10  0.10

1.3 m 3.40 0.20  0.10

�0.4 m

(lateral root)

1.04 0.19   

�1 m

(lateral root)

2.39 0.38   

#8 Pinus 1.3 μSv/h 20.3 m

15.6 m

21 cm

16 m 1.00 0.11  0.11

10 m 0.93 0.61  0.10

1.3 m 1.40 0.12  0.06

Heartwood and transition wood were measured separately for Cryptomeria japonica #5 and #6.

Heartwood had not formed near the crown apex in C. japonica #3 and Pinus densiflora #7.

Heartwood and transition wood of the root samples were not separated for analysis
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the felling site, samples of the bark were taken, and the remaining bark fragments

were brushed away. Subsequently, disks composed of xylem were cut and divided

into sapwood and heartwood. In addition, for a C. japonica sample in 2013, the

pale-colored rings between sapwood and heartwood were further sampled sepa-

rately as transition wood. The woods were cleaved into 5-cm long and 0.2–1-cm

thick fragments, dried, and analyzed to determine their 137Cs levels.

The stumps of C. japonica #3 and P. densiflora #7 were pulled out of the ground

with a grapple machine. Lateral roots of 4–7 cm diameter were sampled, and the

xylem with the bark removed was analyzed for 137Cs.

Fig. 13.1 Tree sampling. (A) Preparing to fell a Cryptomeria japonica tree. (B) Wrapping sample

logs of Pinus densiflora in vinyl sheets to avoid contact with contaminated soil. (C) Drilling out

xylem chips from a standing C. japonica tree
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There was a large variation in radiocesium levels among the trees and within

each tree depending on the sampled positions. The highest concentrations occurred

in the foliage followed by the bark of the trunk (Tables 13.1 and 13.2). Radiocesium

was detected in the xylem of all logs (Table 13.1).

The total volume of radiocesium in each organ was calculated by multiplying the

radiocesium concentration by the dry weight. In 2012, less than 20 % of the

radiocesium from the aboveground part was in the trunk; most was in the foliage.

In 2013, up to 40 % of radiocesium was in the trunk. The change in the distribution

of radiocesium was probably due to gradual defoliation of foliage that was on the

trees at the time of the accident.

To increase the sample size, wood samples were taken without felling from

trunks with a band drill from 11 C. japonica, three P. densiflora, and one Japanese

cypress (Chamaecyparis obtusa) at three stands.

A 7 cm� 7 cm sample of bark was peeled from each sample tree at a breast

height using a knife and a handsaw. The exposed xylem was brushed and then

drilled in the radial direction with a hand drill of an 18 mm drill bit and a clickball.

The shavings from the drilling operation were collected in a plastic bag (Fig. 13.1C).

The sapwood from C. japonica and C. obtusa was collected until the shavings

became darker, and subsequent shavings were heartwood samples. The heartwood

and sapwood of P. densiflora was harder to distinguish on the basis of color;

therefore, both were collected together without separation. Three to five holes

were drilled to provide sufficient samples for analysis.

Table 13.2 Radiocesium in foliage

137Cs content Bq/g

# Grown in 2013 Grown in 2012 Grown 2011

Grown before

2010

Older

shoot

Needle Stem Needle Stem Needle Stem Needle Stem

#3 Cryptomeria 14.16 38.87 74.50 39.57

#4 Cryptomeria 5.42 11.67 13.73 10.47

#5 Cryptomeria 2.04 1.51 2.45 3.66 4.90

#6 Cryptomeria

Branch 8 0.93 3.80 4.27 9.90 5.89

Branch 7 0.67 0.71 5.33 7.08 4.02

Branch 6 0.54 0.90 2.22 7.70 2.54

Branch 5 0.53 0.63 1.75 4.14 4.63

Branch 4 1.02 1.09 3.90 1.02 3.62

Branch 3 0.89 1.24 4.44 6.97 4.39

Branch 2 1.81 2.55 4.27 9.12 4.64

Branch 1 1.60 2.26 7.53 9.00 3.72

#7 Pimus 1.52 2.62 1.40 8.55 → 17.16

#8 Pinus 0.89 0.62 0.38 0.62 – 1.14 – 2.71 2.16

Cryptomeria japonica: leaves and stems covered with leaves were not separated for analysis.

Pinus densiflora: no needles were attached on older shoots more than 1 year old
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The radiocesium concentration was high in the bark of all trees and it was also

detected in the xylem. Although the radiocesium levels in the trees tended to be

higher in the stand with the higher air dose rate, there was also a large variation

between the trees in each stand (Fig. 13.2). It may be possible to estimate the

amount of radiocesium in the xylem from the air dose rate and to estimate the

cesium deposition, but the large variation between trees should be noted.

The distribution of radiocesium within 5-mm thick disks cut from the same logs

used for quantitative measurement of radiocesium was visualized using an imaging

plate (BAS-IP MS, GE Healthcare Japan). Disks and image plates were stacked in

the cassette and kept in a box made of �5-cm thick lead bricks to shield against

natural radiation. Images were obtained using a fluorescent image analyzer

(FLA-9000, Fujifilm) after the exposure for 1–5 months. Disks were also taken

from C. japonica and P. densiflora trees felled at the Ecohydrology Research

Institute, University of Tokyo, 425 km southeast of the Fukushima Daiichi nuclear

power plant, and were exposed to the image plates under the same conditions as

described above. However, no images could be detected from these log disks. This

indicates that the images obtained from the Minamisoma samples represented the

distribution of radioactive substances emitted from the nuclear power plant

accident.

The images from each log disk are shown in Fig. 13.3. Similar to the results from

Table 13.1, C. japonica have higher radiocesium concentrations in the heartwood

than in the sapwood, especially for disks that were taken from higher positions

nearer the crown. Kuroda et al. (2013) reported higher concentrations in

C. japonica sapwood than heartwood, but they only analyzed wood lower than

3 m; therefore, their results do not necessarily conflict with ours. The imaging plates

for the trunk xylem of C. japonica #5 show a dark color indicating the strong

presence of radiocesium, which appeared to be highest at the outer edges of

heartwood where heartwood formation was taking place (Fig. 13.3). ForC. japonica

#5 and #6, we analyzed transition wood with a low moisture content at the boundary

between the heartwood and sapwood. The dry weight concentration of radiocesium

was higher in the heartwood, followed by the transition wood, and then the sapwood

(Table 13.1). In C. japonica, rubidium is actively transported from the sapwood to

the outer heartwood via xylem ray (Okada et al. 2012), indicating that this mech-

anism could be used to transport another alkaline metals such as cesium.

The concentration of radiocesium was less in the xylem of P. densiflora than

C. japonica and less in the heartwood than the sapwood of both the felled trees and

the cored samples (Fig. 13.2). Samples of C. obtusa, another timber species, were

taken from only one tree, but the radiocesium distribution in the xylem was similar

to C. japonica. If the radiocesium was initially absorbed into the xylem via the

foliage, then there should be a relationship between the foliage volume and

radiocesium amount in the xylem. For the five trees felled from the same stand

(#4–#8), the total radiocesium amount in the xylem of each trunk was compared

with the dry weight of the foliage (as an index of total foliage volume) to test

whether there was a correlation. The radiocesium amount in the trunk xylem was

proportional to the 2/3 power of foliage dry weight, which indicates a surface area
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Fig. 13.2 The radiocesium

content of trunks taken from

a number of forest stands

with different air dose rates

(Masumori et al. 2015).

Data from Table 13.2 is

included. Small symbols:

trees felled in 2012
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#3 Cryptomeria

at 1.3 m

at 4 m

at 7 m

at 10 m

at 13 m

at 16 m

at 19 m

#3 Cryptomeri a

at 1.3 m

at 4 m

at 7 m

at 10 m

at 13 m

at 16 m

#7 Pinus

at 1.3 m

at 4 m

at 7 m

at 10 m

at 13 m

at 16 m

at 19 m

at 1.3 m

at 10 m

at 19 m

#5 Cryptomeria

#6 Cryptomeria

at 1.3 m

at 4 m

Fig. 13.3 Trunk cross-sections showing distribution of radioactivity. Five sample trees cut into

log disks at various heights (right) were exposed to imaging plates (Masumori et al. 2015). Darker

colors indicate higher radioactivity. The log disks included the bark for #3, #4, and #7. The black

spots on the xylem image are due to some scattering of bark fragments. The bark from C. japonica

#5 and #6 was peeled off before cutting the log disks; therefore, there is no interference from bark

fragments. The bark from P. densiflora #8 was stripped off in the same way, but no radiation was

seen (data not shown)
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(Fig. 13.4). The interspecific differences in radiocesium content between the xylem

of C. japonica and P. densiflora were not related to the anatomical or physiological

characters of each species but were more likely due to differences in the areal

quantity of the foliage surface where radiocesium deposited.

13.4 Distribution of Radiocesium in the Crown

Radiocesium was analyzed in the leaves of different ages. From the felled

P. densiflora trees, we separately sampled the needles from current-year shoots

and needles from shoots elongated in the previous year. On the sampling day in

December, the pine had no needles on the older shoots. Young C. japonica shoots

are densely covered with needle-like leaves; thus, the leaves and stem were not

separated. The remaining shoots comprising leaves and stem were separated

according to the year of growth, up to 3 years old. Shoots more than 3 years old

were counted as branches, even if they still had needles attached.

Branches that developed before the accident in March 2011 showed the highest

radiocesium concentrations, although radiocesium was detected in foliage that had

developed after the accident (Table 13.2).

Eight branches were analyzed separately from C. japonica #5. A large variation

in radiocesium concentration occurred between the branches and the foliage

(Table 13.2). In agreement with Akama et al. (2013), we found that for each branch,

the younger leaves tended to have the lowest radiocesium concentrations, but the

concentrations in the older leaves did not correlate with those in the younger leaves

(Table 13.2). Therefore, the movement of radiocesium to newly elongating shoots

10

100

1 10 100

Fig. 13.4 Total

radiocesium content in the

xylem of trees and the dry

weight of the foliage from a

single stand (Masumori

et al. 2015)
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of the same branch was not necessarily driven by a concentration gradient. The

youngest leaves on branches at a lower position on the tree had higher concentra-

tions of radiocesium than those on higher branches. The youngest leaves of

C. japonica #6 had lower positioned foliage and higher radiocesium concentration

than those of C. japonica #5 (Table 13.2, Fig. 13.5). Although most radiocesium in

the older foliage was immobilized, some radiocesium is likely to be mobile and

translocated not only within the tree but also outside the tree and downwards

through the forest canopy such as with rain. We suggest that the position in the

canopy should be taken into account when considering radiocesium migration into

developing organs.

13.5 Radiocesium in Xylem from Fallen Trees

In August 2012, samples were taken from the trunks of two C. japonica trees

that had already fallen and their radiocesium concentrations were measured

(Table 13.3). At the forest site where the two trees had grown, thinning was

occurring at the time of the earthquake on March 11, 2011. Tree #1 had been

felled, but work was interrupted because of the earthquake before limbing proce-

dure and the tree was left on the forest floor with the foliage still attached. Tree #2

Fig. 13.5 Radiocesium

content in C. japonica

leaves developed after the

nuclear accident. Data from

Table 13.3 is included. The

value at height of 11.1 m is

for Tree #6. All other values

are for Tree #5
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had been growing in the vicinity of tree #1 but had not been thinned, although it was

uprooted during the typhoon in June 2012 and had been lying on the forest floor for

a month and a half at the time of our research. Consequently, tree #1 would have

been separated from its roots at the time of the nuclear power plant accident, but

tree #2 would have been intact and growing.

Two disks were sampled from the logs of each tree at 1.3 m and 13 m from the

ground. At these positions, the trunk had not touched the soil, even after the tree had

fallen. From each disk, the bark was sampled and the xylem was separated into six

fractions from the sapwood to the pith according to the tree rings. For tree #1,

separate cesium analyses were conducted for the semicircular half of lying trunk

facing the sky and the semicircular half of the lying trunk facing the ground.

Radiocesium was present in the xylem of the trunk of C. japonica #1, which had

been separated from its roots at the time of the nuclear power plant accident.

C. japonica #2 had similar radiocesium concentrations in the xylem, although

it had been an intact tree up to 15 months after the accident (Table 13.3). This

Table 13.3 Radiocesium content in trunk of fallen trees

#

Tree height

Discat

Radial 137Cs content Bq/g

Diameter at 1.3 m Position

Skyward semi circle beneath

semi circle

#1 Crvotomeria 25.0 m 13 m Bark 12.14 8.80

26 cm 7 ~ 9 cm 0.58 0.63

4 ~ 7 cm 0.28 0.48

Pith ~ 3 cm 0.18 0.27

1.3 m Bark 7.88 3.71

11 ~ 12 cm 0.24 0.18

9 ~ 11 cm 0.16 0.12

7 ~ 9 cm 0.08 0.06

5 ~ 7 cm 0.06 0.04

3 ~ 5 cm 0.04 0.02

Pith ~ 3 cm 0.09 0.01

#2 Crvntomeria 23.0 m 13 m Bark 44.23

20 cm 8 ~ 9 cm 0.38

7 ~ 8 cm 0.26

6 ~ 7 cm 0.2

5 ~ 6 cm 0.22

3 ~ 5 cm 0.19

Pith ~ 3 cm 0.15

1.3 m Bark 5.64

5 ~ 6 cm 0.2

4 ~ 5 cm 0.17

3 ~ 4 cm 0.31

Pith ~ 3 cm 0.54

For Cryptomeria japonica #2, both semicircle samples were pooled for measurement
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suggests that most of the radiocesium in the xylem of C. japonica is not absorbed

through the roots. The concentration of radiocesium in the roots of C. japonica #3

was lower than that in the trunk (Table 13.1), suggesting that a comparatively small

amount of radiocesium had migrated from the roots to the trunk at the time of

sampling.

If the radiocesium emitted by the accident had precipitated with the rain, the

amount of radiocesium deposited on the sky-facing and ground-facing of the fallen

C. japonica #1 should differ. Higher concentrations of radiocesium were detected

in the sky-facing bark (Table 13.3). If radiocesium diffused inward from the

bark to the xylem, there should be a higher concentration in the sky-facing

xylem, but in contrast to the bark, there were no clear differences between

sky-facing and ground-facing xylem (Table 13.3). Although C. japonica #1 was

felled, the foliage remained in place; thus, physiological activity would have

continued at the tissue level. Therefore, the radiocesium detected in the xylem of

the trunk may have migrated basipetally through the vascular bundle from deposits

on the foliage.

13.6 Greenhouse Experiments

Greenhouse cultivation experiments were conducted to determine the characteris-

tics of radiocesium absorption from the roots in both C. japonica and P. densiflora.

These experiments also allowed us to examine the effects of secondary deposits

from the canopy, which contained a high quantity of radioactive deposition, and

migration from resuspended soil particles.

Two-year-old seedlings grown in a radiocesium-free environment were

transplanted in pots with soil from Minamisoma forests containing 20 Bq/g of
137Cs. After 5 months in the greenhouse, shoots from three C. japonica seedlings

and seven P. densiflora seedlings were analyzed for radiocesium. Because a

5-month period was insufficient for the C. japonica plants to recover an appropriate

contact between root system and potting media, not much shoot growth was seen

during this period. 137Cs migration into the C. japonica shoots was 5–10 Bq/kg, and

migration into the P. densiflora shoots was 2–38 Bq/kg. Imaging plates show that

the radioactivity was uniformly distributed among all the organs within the shoots,

except it was higher in newly grown P. densiflora shoots (Fig. 13.6).

In standing trees, the incorporated radiocesium in the xylem was greater in

C. japonica than in P. densiflora, while migration through the roots did not differ

between the species. In these forests, the levels of radiocesium in the xylem can

gradually increase because of absorption via the root from the forest floor where

much of the radiocesium is deposited and is accumulating.
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Chapter 14

Ecosystem Monitoring of Radiocesium
Redistribution Dynamics in a Forested
Catchment in Fukushima After the Nuclear
Power Plant Accident in March 2011

Nobuhito Ohte, Masashi Murakami, Izuki Endo, Mizue Ohashi,
Kohei Iseda, Takahiro Suzuki, Tomoki Oda, Norifumi Hotta,
Keitaro Tanoi, Natsuko I. Kobayashi, and Nobuyoshi Ishii

Abstract The accident at the Fukushima Daiichi Nuclear Power Plant in March

2011 emitted 1.2� 1016 Bq of cesium-137 (137Cs) into the surrounding environ-

ment. Radioactive substances, including 137Cs, were deposited onto forested areas

in the northeastern region of Japan. 137Cs is easily adsorbed onto clay minerals in

the soil; thus, a major portion of 137Cs can be transported as eroding soil and

particulate organic matter in water discharge. Dissolved 137Cs can be taken up by

microbes, algae, and plants in soil and aquatic systems. Eventually, 137Cs is

introduced into insects, worms, fishes, and birds through the food web. To clarify

the mechanisms of dispersion and export of 137Cs, within and from a forested

ecosystem, we conducted intensive monitoring on the 137Cs movement and storage

in a forested headwater catchment in an area approximately 50 km from the Nuclear

Power Plant. Two major pathways of 137Cs transport are as follows: (1) by moving

water via dissolved and particulate or colloidal forms and (2) by dispersion through

the food web in the forest-stream ecological continuum. The 137Cs concentrations

of stream waters were monitored. Various aquatic and terrestrial organisms were
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periodically sampled to measure their 137Cs concentrations. The results indicate

that the major form of exported 137Cs is via suspended matter. Particulate organic

matter may be the most important carrier of 137Cs. High water flows generated by a

storm event accelerated the transportation of 137Cs from forested catchments.

Estimation of 137Cs export from the forested catchments requires precise evaluation

of the high water flow during storm events. The results also suggested that because

the biggest pool of 137Cs in the forested ecosystem is the accumulated litter and

detritus, 137Cs dispersion is quicker through the detritus food chain than through the

grazing food chain.

Keywords Cs • Forest ecosystem • Suspended solid • Food web • Bioaccumlation

14.1 Introduction

Following the Fukushima Daiichi Nuclear Power Plant accident in March 2011,

approximately 1.5� 1017 Bq of iodine-131 (131I) and 1.2� 1016 Bq of cesium-137

(137Cs) were emitted into the surrounding environment (Ministry of Education,

Culture, Sports, Science and Technology and Ministry of Agriculture, Forestry and

Fisheries 2012). These radioactive substances were deposited on the northeastern

region of Honshu Island, Japan. Forests occupy more than 70 % of the total area in

these regions and are particularly important for local societies, not only because of

their association with the forestry industry but also for their residential environ-

ment, which includes source areas of drinking water. The first phase of government

surveys revealed that a major portion of the deposited radiocesium was trapped in

the canopy and in the litter layer on the forest floor (Ministry of Education, Culture,

Sports, Science and Technology; Ministry of Agriculture, Forestry and Fisheries

2012; Hashimoto et al. 2012). Radiocesium has been shown to be easily adsorbed

by clay minerals and soil organic matter (Kruyts and Delvaux 2002), which can be

transported by eroded soil, particulates, and dissolved organic matter through

hydrological channels, streams, and rivers (e.g., Fukuyama et al. 2005; Wakiyama

et al. 2010). Within the forested ecosystem, radioactive materials deposited on the

tree canopies subsequently move to the forest floor by precipitation (Kinnersley

et al. 1997; Kato et al. 2012) and litter fall (Bunzl et al. 1989; Schimmack

et al. 1993; Hisadome et al. 2013). It is expected that the movement of radiocesium

from the canopy to the forest floor will gradually decrease (Hashimoto et al. 2013),

and it is considered that its movement in the Fukushima forests has been active

because only 3.5 years have passed since the accident.

Dissolved radiocesium, which is relatively free from soil adsorption, can also be

taken up by microbes, algae, and plants in soil and aquatic ecosystems. By prop-

agating through the food web in the forest ecosystem, it was expected that

radiocesium would eventually be introduced into soil, insects, worms, fishes, and

birds. Many previous reports on the distribution and transfer of radionuclides have

focused on bioaccumulation and the transition between trophic levels (Kitchings

et al. 1976; Rowan and Rasmussen 1994; Wang et al. 2000).
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Therefore, it is necessary to investigate the major pathways of radiocesium

transfer in the forest, such as physical transportation via hydrological processes

and biological transfer through the food web in terrestrial and aquatic ecosystems.

To describe the current status and to examine the hypothesized mechanisms

mentioned above, catchment scale biogeochemical observations have been

conducted in the northern part of the Fukushima prefecture since August 2012

(Ohte et al. 2012, 2013), and they currently continue (February 2015). Here, we

report the latest results and discuss the future perspectives for monitoring

radiocesium levels in Fukushima forests.

14.2 Materials and Methods

14.2.1 Study Site

The study area is the Kami-Oguni River catchment, which is located approximately

50 km from the Fukushima Daiichi Nuclear Power Plant. The Ministry of Educa-

tion, Culture, Sport, Science and Technology (2013) used aircraft survey devices to

determine that the air dose rate in this region was 1.0–1.9 μSv h�1 and the total

deposition rate of 137Cs was 300–600 kBq m�2 in 2013. To intensively monitor the

radioactive cesium dynamics, we set a small sub-catchment in a forest ecosystem in

the headwater part of the Kami-Oguni River catchment, known as the Sanbo

Observational Forest Catchment.

The geology of the catchment is dominated by volcanic rocks (andesite and

basalt) formed by volcanic eruptions during the Miocene Epoch. The soil is

classified as Dystrudepts (Soil Survey Staff 2014), which is characterized by high

exchangeable Mg2+ and low K+ concentrations. The soil texture in the topsoil

(A-Horizon) of this area was a mixture of clay< 0.002 mm (25.3 %), silt

0.02–0.002 mm (40.1 %), sand 2–0.02 mm (34.6 %) determined with the sieving

method (Kato et al. unpublished data).

Major areas of Sanbo Observational Forest Catchment are covered by typical

secondary stands that consist of broadleaf deciduous species dominated by Quercus

serrata Murray and Zelkova serrata. Some parts of these secondary stands were

mixed with naturally regenerated Japanese red pine (Pinus desiflora). The valley

areas of the catchment were used as Japanese cedar (Cryptmeria japonica) planta-

tions for timber production. Pinus desiflora and Cryptmeria japonica are evergreen

conifers.
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14.2.2 Field Observations and Sampling

To monitor the fluxes of radiocesium transported by water flow into and out of the

forest catchment, we measured water fluxes and radiocesium concentrations for

each elemental hydrological process, such as rainfall, throughfall, stemflow, and

stream water discharge. The water discharge from the catchment was continuously

measured using a partial flume with a water level recorder. Stream water was

sampled monthly and intensively during storm events.

Three rectangular plots including two deciduous-pine mixed stands (DP1 and

DP2, 20 m� 20 m) and one cedar plantation (CP, 10 m� 40 m) were selected to

investigate the spatial distributions and movements of radiocesium in hydrological

and biogeochemical processes within the plant and soil system. We conducted

monthly samplings of litter fall, throughfall, stemflow, and soils from each plot,

and quantified all samples. Details of the sampling are described in Endo

et al. (2015).

Food web components including terrestrial and aquatic organisms in the contin-

uum of forest and stream ecosystems were sampled to investigate the current status

of radiocesium flows and storages affected by biological activities. All samples

were collected from the study site and identified to the genus and species level, and

then classified into 10 functional groups according to the criteria shown in Fig. 14.1.

The sampling points for each sample were selected randomly within the study

catchment. The samples were collected in May, July, and September 2012 and in

February 2013. Detailed descriptions of the sampling and data analysis are

presented in Murakami et al. (2014).

Whole trees were sampled in November 2012 and 2013 to estimate the stocks of

radiocesium in the above ground biomass of the dominant trees, Quercus serrata

and Cryptomeria japonica, at the study site. Quercus serrata is the most common

species in the secondary deciduous forest in this region, and C. japonica is the most

common species in the plantations for timber production in Japan. Three

Fig. 14.1 Schematic food web of the present study. Ten functional groups were used as sampling

units. Solid lines indicate trophic interactions and dashed lines indicate nutrient flow. Broken lines

show spatial movements; e.g., transformation of tadpoles to frogs and dragonflies or supply of leaf

litters from forest to stream (Murakami et al. 2014)
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individuals of Q. serrate and one C. japonica were sampled at each sampling event

in November of 2012 and 2013. Only a single C. japonica was sampled, because

these trees were planted at a specific time and thus their tree sizes were

homogeneous.

Radiocesium concentrations (137Cs and 134Cs) of leaves, branches, and stems

were measured separately. Moreover, stem samples were separated into sapwood

and heartwood. Prior to these samplings and measurements, surveys of individual

tree sizes were performed for three rectangle plots. All trees with a diameter at

breast height (DBH) >5 cm were measured for their DBH and height at the top of

the canopy.

14.2.3 Sample Analysis

Germanium semiconductor detectors were used to measure radiocesium concen-

trations for all samples. Gamma-ray spectrometry was conducted using germanium

detectors (Seiko EG&G). The measured values were corrected for the sampling

day, and were expressed in Bq kg�1 of dry weight for the organic samples and in

Bq L�1 for the water samples, respectively.

To evaluate the relative trophic levels for the sampled organisms, the stable

nitrogen isotope ratio (δ15N) for each sample was measured using SerCon ANCA

GSL elemental analyzer interfaced to a SerCon Hydra 20–20 continuous flow

isotope ratio mass spectrometer. Analysis and data treatments are explained in

Murakami et al. (2014).

14.3 Results and Discussion

14.3.1
137

Cs Concentrations of Tree Parts

The leaf 137Cs concentrations for C. japonica were higher than 10,000 Bq kg�1 for

the mature and current leaves, but they decreased to 3500 Bq kg�1 for mature leaves

and 2700 Bq kg�1 for current leaves (Fig. 14.2). These results indicate that the

leaves that were on the canopy when the radiocesium was deposited still contained

very high 137Cs levels in November 2012, and even the new leaves in 2012 had

similarly high levels of 137Cs concentration. These results suggest that 137Cs was

translocated from the old leaves to the new leaves. The decreasing 137Cs concen-

trations in the mature leaves implies that they were replaced with new leaves with

lower 137Cs concentrations, and also that the 137Cs attached to the leaf surfaces of

the old leaves was gradually washed out by rainfall.

On the other hand, leaves of Q. Serrata had 1000 and 990 Bq kg�1 in 2012 and

2013, respectively. Considering that no living leaves were on the canopies of these
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deciduous trees when the radiocesium fell in March 2011, the 137Cs in the living

leaves was probably transported from the other parts of the tree in 2012 and 2013.

For C. japonica, the concentrations of 137Cs in the bark within the evergreen

canopy part of the tree (>9000 Bq kg�1 in 2012 and 5000–7000 Bq kg�1 in 2013)

were higher than in the bark beneath the canopy (2000–5000 Bq kg�1 in 2012 and

1000–2000 Bq kg�1 in 2013; Fig. 14.3). In contrast, no significant vertical patterns

of 137Cs concentrations was found in the bark of Q. serrate (10,000–-

18,000 Bq kg�1), which did not have a canopy of leaves when the radiocesium

was deposited in March 2011. This suggests that aerosols containing radiocesium

deposited and adhered to the whole surface of tree trunks. The bark 137Cs

Fig. 14.2 The 137Cs concentration in living leaves of Quecus serrate and Cryptomeria japonica.

Samples were collected from whole tree sampling conducted in early November 2012 and 2013.

Because C. japonica is an evergreen species, it has multiple aged leaves, while Q. serrate is a

deciduous species. Data without error bars were derived from the samples without replications
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concentration decreased to 5000–10,000 Bq kg�1 except for the top part of the

canopy in 2013. For both the evergreen conifer and deciduous trees, the decrease in
137Cs concentration between 2012 and 2013 implies that the attached radiocesium

on the trunk surfaces was leached out by rainwater, and was translocated into other

part of the body. Removed with bark abrasion was also possible.

The 137Cs concentration in C. japonica wood was 100–210 Bq kg�1 for sap

wood and 10–220 Bq kg�1 for heartwood, and that of Q. serrate was 60–-

120 Bq kg�1 for sap wood and 20–80 Bq kg�1 for heartwood (Fig. 14.4). For the

coniferous species C. japonica, the difference in 137Cs concentrations was small

between sapwood and heartwood, indicating that the translocation and/or disper-

sion occurred quickly within the wood.

While the 137Cs concentration in C. japonica wood decreased between 2012 and

2013, the concentration increased for Q. serrate wood. This suggests that translo-

cation from the bark, and probably from surface soils including litters, through roots

to sapwood and heartwood might be delayed inQ. serrate compared to C. japonica,

or might be greater in Q. serrate than C. japonica.

All of the results indicate that 137Cs moved actively via nutrient transportation

mechanisms and abiotic dispersion into the tree body. In addition to the movement
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from bark (which continued to have high 137Cs concentrations) to sapwood, trans-

location to the juvenile leaves was clearly evident. It is currently difficult to

evaluate the relative contributions to 137Cs in the wood from root uptake and

translocation from the bark under field conditions. The root uptake rate of the
137Cs is the most important factor to be evaluated precisely and urgently.

14.3.2
137

Cs Movement from the Canopy to the Forest Floor

The annual 137Cs fluxes from the canopy to the forest floor via throughfall, stem flow,

and litter fall were summarized from October 2012 to September 2013 in Table 14.1.

The annual 137Cs fluxwith litter fall was 2.9, 2.1, and 7.5 kBqm�2 year�1 for the DP1,

DP2, and CP plots, respectively. The largest 137Cs flux in the CP plot can be explained

by the highest 137Cs concentration in the litter from C. japonica.

The annual 137Cs fluxes for the sum of throughfall and stem flow were 3.7, 1.8,

and 4.0 kBq m�2 year�1 for the DP1, DP2, and CP plots, respectively. The rate

values were in the same order as those for litter fall. The total 137Cs flux by these

pathways were 6.6, 3.9, 11.5 kBq m�2 year�1 for the DP1, DP2, and CP plots,

respectively.

Each of these fluxes changed temporally depending upon phenology, seasonal

variation of precipitation rate, and frequency of storm events (the data were not

shown. See Endo et al. 2015). The 137Cs flux with litter fall was largest in late fall

(late October to mid-November) while that with throughfall and stem flow was high

in the middle of summer (July to September) when the precipitation rate was

greatest. The 137Cs movement from the canopy to the forest floor occurred actively

through the plant-growing season, even 2 years after the radiocesium was

deposited.

The 137Cs availability for plants, algae, and microbes might be different between

those attached to litters and those dissolved or suspended in throughfall or stem flow

water. In order to understand the current mechanisms of radiocesium cycling

between plants and soils, it is important to quantify the bioavailable 137Cs in the

Table 14.1 Annual average 137Cs concentration of throughfall, stemflow and litterfall, and the

estimates of annual 137Cs flux by the different paths

Annual mean 137Cs concentration 137Cs flux

DP1 DP2 CP DP1 DP2 CP

(Bq L�1) (Bq m�2 year�1)

Throughfall 3.10 3.01 5.54 3254 1694 3388

Stemflow 4.01 0.97 2.16 458 101 69

(Bq kg�1)

Litterfall 8068 7464 17,887 2904 2125 7518

The plot codes; DP1, DP2 and CP indicate the deciduous-pine mixed stand #1, the deciduous-pine

mixed stand #2 and the cedar plantation, respectively (calculated from the original data in Endo

et al. 2015)
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forest floor including the litter layer and the surface layer of mineral soils where the

activities of roots and microorganisms are high.

14.3.3 137Cs Discharge from the Forest Catchment

After the radioactive substances were deposited in March 2011, several reports

describing radiocesium transportation through the rivers in Fukushima and sur-

rounding areas were published. One report found that 90 % of the 137Cs discharged

to the coast through the river were attached to suspended solids (SS), and 60 % of

those were discharged during flooding (Yamashiki et al. 2014). The reports all

stated the importance of evaluating the quantity and quality of SS in order to

quantify 137Cs export from the catchment.

Figure 14.5 represents an example of the short-term temporal change in SS

concentration and the 137Cs concentration with the discharge hydrograph during the

storm event on October 15, 2013. The SS concentration increased with an increase
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in river discharge, and began to decrease before the river discharge reached a peak

value. The response of 137Cs concentration to the river discharge was similar to that

of the SS concentration, evidencing that the 137Cs was transported by the SS.

As shown in Fig. 14.6, the changes of the SS and 137Cs concentrations

corresponding to the river discharge rate was different between the period of

increasing discharge and decreasing discharge. This suggests that the major source

of the discharging 137Cs was the surface soils and litter detritus from the areas near

the riverbank. Those materials can be easily washed out under high flow conditions

during a storm.

In the case of the event on October 15, 2013, the decrease in SS and 137Cs

concentrations before the peak discharge moment suggested that the limitation in

SS and 137Cs sources occurred during the increasing discharge period (Figs. 14.5

and 14.6).

The mechanism of washing 137Cs from the riverbanks might be activated by

storm events that occur several to several ten times per year. This means simulta-

neously that the supply of 137Cs onto the forest floor of this area (riverbanks) has

occurred continuously. The substantial mechanism of this 137Cs supply was litter

fall, throughfall, and stem flow as we explained earlier in this chapter.

The rating function was established from those relationships between the dis-

charge rate and the 137Cs concentration. The annual 137Cs discharge (1-year

accumulated value) using this function was estimated to be 330 Bq m�2 year�1

for the period from August 31, 2012 to August 30, 2013, while 670 Bq m�2 year�1

for the period from October 23, 2012 to October 22, 2013. This difference was

attributed to the large storm event in the mid October 2013, which discharged

227 Bq m�2 of 137Cs in a single flood event. This emphasizes the importance of

quantifying the influence of storm events on the amount of 137Cs discharged.
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The annual 137Cs discharge through the river was one order of magnitude

smaller than the annual total flux of 137Cs movement from the canopy to the forest

floor. This means that the source limitation of the 137Cs has not occurred for the

discharge process on a yearly basis.

However, the estimated amount of the 137Cs deposited initially in March 2011

was 100–300 kBq m�2 (Ministry of Education, Culture, Sport, Science and Tech-

nology 2013). This is three orders of magnitude larger than the quantity of 137Cs

discharged through the river, indicating that in this forest ecosystem the proportion

of the 137Cs pool that is discharged through the river is significantly less than the

proportion lost by radioactive decay.

14.3.4 137Cs Dispersion Through Food Web

As mentioned above, the 137Cs has already been in the wood of the dominant trees.

It is possible that 137Cs has begun to circulate among plants and soils. It could be

inferred that the food web has already received the 137Cs dispersion to some extent

from the primary producers.

Fig. 14.7 137Cs concentrations in each functional group.Different letters beside each box indicate

differences in 137Cs concentrations based on the grouping of functional groups with the model

selection using glm. Data below the detection limit were excluded from the analysis. Numbers

beside the BDL (below the detection level) symbols show the number of specimens BDL

(Murakami et al. 2014)
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Figure 14.7 shows the observed 137Cs concentrations in aquatic and terrestrial

organisms classified into functional feeding groups. The 137Cs concentrations in

leaf litters, fungi, detritivores, and predators were significantly higher than those in

living plant leaves and their herbivores. The large accumulation of 137Cs in litters

and litter detritus indicates that the detrital food chains in the terrestrial community

are major pathways that substantially transfer 137Cs. In the aquatic community, the
137Cs concentrations in leaf detritus and algae (the base foods) were between those

of living leaves and litters, and reflected on those of organisms at higher trophic

levels.

As proxies for the relative heights of the trophic levels (Fig. 14.8a), the δ15N

values tended to increase as the 137Cs concentrations in organisms decreased

(Fig. 14.8b). This decrease in 137Cs concentrations through trophic interactions,

suggests biological dilution and not accumulation of 137Cs.

14.4 Summary and the Future Directions

Biogeochemical storage, cycling, distribution, and movement of radiocesium in the

forested ecosystem were assessed for about 3.5 years after the Fukushima Daiichi

Nuclear Power Plant accident. The most important finding was that the 137Cs

movement within the forested ecosystem was still active, and the 137Cs discharge

through the river was significantly small compared to the deposited amount of 137Cs

in this area.

The majority of the 137Cs pool was in the litter layer and the shallow soil

horizons. The attached 137Cs on the tree canopies and trunks was gradually

removed and significantly transferred to the forest floor. Simultaneously, 137Cs

moved into the tree bodies from the surfaces and probably also via root uptake

from the litter layer and soils, while 137Cs had been transported into the new leaves

Fig. 14.8 Relationship between δ15N values and 137Cs concentrations in each sample. Equation:

log(137Cs)¼�15.7(δ15N) + 1392.3. Data below the detection limit were excluded from the anal-

ysis (Murakami et al. 2014)
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since the early phase of monitoring. Although the 137Cs transformation from the

tree canopies to the forest floor was still active in 2012 and 2013, it can be inferred

that the transferring flux will decrease gradually with the removal of the attached
137Cs. It can also be hypothesized that the “equiribulium” will be made between the

downward 137Cs transferring flux and the uptake flux by plants. This internal

cycling between soils and plants will play important role to retain the relatively

mobile forms of 137Cs in the forest ecosystem, even though certain portion of the
137Cs in the litter layer moves into the mineral soil horizons, and is fixed strongly by

the cray minerals.

Detrital food chains, based on leaf litter detritus as the primary carbon source,

have introduced and dispersed 137Cs through the food web, even to the top preda-

tors. However, no evidence of bioaccumulation was detected from the present

observations.

An urgent question to address is when and how the 137Cs diffuses through the

grazing food chain and the detritus food chain, and how rapidly does this process

occur? The key aims are not only to predict this phenomenon, but also to precisely

understand the circulation and redistributions among the system of the soil-plant

nutrient cycle, the mechanisms of 137Cs release from litter and soil organic matter,

as well as the 137Cs-absorbing behavior of plants.

As we reported in this chapter, radiocesium movement within the forest ecosys-

tem is still active and has not reached a steady state. In order to determine the long-

term (e.g., equivalent to the 137Cs half-life) influences of radiocesium existence in

the forest ecosystem, we still need to carefully monitor the succession of changes in

radiocesium distributions.
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Chapter 15

Reduction of Air Radiation Dose by Ponding
Paddy Fields

Naritaka Kubo, Toshiaki Iida, and Masaru Mizoguchi

Abstract Radioactive cesium (Cs) released by nuclear accidents is sorbed and

fixed onto soil surfaces, which then radiate strong gamma rays (γ-rays). Decontami-

nation around dwelling areas is now eagerly being implemented but more efforts

are necessary to reduce the air radiation dose. Paddy field ponding, from the

viewpoint of cost-effectiveness, is considered to be an effective practice for reduc-

ing the air radiation dose in the environment. In this study, field experiments were

conducted at Sasu and Komiya regions in Iitate Village to verify the effectiveness

of paddy field ponding, and numerical experiments were also conducted using the

formula for uncollided γ-ray fluxes passing through the shield material.

It was found that the a ponding water depth of 20–25 cm can drastically reduce

the number of γ-ray photons emitted from the paddy fields, and the reduction in

radiation dose was related to water depth. However, some differences were also

observed between field and numerical experiments. The numerical calculation

showed that the radiation dose decreased exponentially when the depth increased;

however, field experiments showed a linear decrease. The cause might be the build-

up effect caused by Compton scattering, but the details are unclear. It is necessary

to explain these differences before ponding becomes a useful practice.
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15.1 Introduction

Three and a half years have passed since the Great East Japan earthquake (March

11, 2011), and earnest decontamination works are now being implemented around

the dwelling areas of IITATE village. Radioactive substances are surely reduced by

the decontamination works and are also gradually diminishing through runoff and

decay. In the near future, the evacuation order will be lifted at “zones in preparation

for the lifting of the evacuation order” successively when the air radioactive dose

becomes sufficiently low (Minyu-net 2014). However, more efforts are necessary to

reduce the radioactivity before the evacuated villagers return. Among some of the

measures is “paddy field paddling and ponding,” which is considered to be feasible

in terms of cost-effectiveness and farmland conservation.

Gamma rays (γ-rays), which are generated when radioactive Cesium

(Cs) decays, are a form of electromagnetic radiation like visible light; they behave

just like particles and are emitted in every direction (Tazaki 2011). In the case of

paddy fields, Cs fixes onto the soil surface (Shiozawa et al. 2011), and because the

field surface is flat, the soil can be a major source of γ-rays if there is no obstructive

shielding. However, if the paddy fields are ponded, the γ-rays coming from the

paddy field can be reduced considerably. Thus, even if the living space is close to

the paddy field, the γ-ray photons are substantially reduced because the γ-rays

heading toward the living space have a low elevation angle and they must cross

the ponded water layer obliquely with long path length.

Most Japanese paddy fields are irrigated unlike upland fields, and they are

equipped with irrigation facilities to supply them with water. Some facilities were

damaged by the earthquake, but minor repairs and maintenance can recover their

functions. Only supplying water to the paddy field, however, cannot attain

maintaining ponding depth; they need puddling and border coating. Without these

practices, ponded water is rapidly lost by vertical and horizontal percolation (Lee

et al. 2003). Puddling disperses Cs within the plow layer, and the γ-ray dose can be

reduced by soil and saturated soil water. The puddling also prevents the dust, which

sorbs Cs, from being blown up. Besides, paddy field ponding is effective for

preventing the growth of weeds and invasion by wild animals like wild boars and

monkeys. If the soil-to-rice transfer of radioactive cesium is permissible, then rice

cultivation in a deeply ponded paddy field will be a big step for reconstructing the

village.

In this paper, the effects of paddy field ponding will be verified through field

experiments and numerical calculations, and problems will be discussed relating to

field experiments and field application.
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15.2 Theoretical Consideration

Firstly, the dangers of non-ponded paddy fields will be proven by a simple calcu-

lation. Let’s consider three radiation sources located at points A(�ε, 0), O(0, 0), and

B(ε, 0) on the x-axis as shown in Fig. 15.1. Point P(x, y) is remote from O by the

distance r, and r is assumed to be much longer than the interval ε (r � ε).

The changes of the γ-ray intensity at point P and the visual angle ω (∠APB) are

examined when the elevation angle, θ changes. As the γ-rays are emitted in every

direction from the source, the intensity is inversely proportional to the square of the

distance from the source. The square of the distance from A to P, and the reciprocal

of the square can be approximated as follows.

AP
2 ¼ xþ εð Þ2 þ y2 ¼ r2 1þ 2

xε

r2
þ ε2

r2

� �

ffi r2 1þ 2
xε

r2

� �

1
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2
ffi 1

r2
1� 2

xε

r2

� �

Therefore, as shown below, the total intensity of the γ-rays from three sources is

about three times that from only one source at O regardless of the elevation angle, θ.

1
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2
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2
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2
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1� 2
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r2

� �

þ 1

r2
þ 1

r2
1þ 2

xε
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¼ 3
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This means that the radiation dose at P is proportional to the number of sources and

does not depend on the elevation angle, θ.

On the other hand, when r� ε, three lines AP, OP, and BP become almost

parallel and the following relationship can be obtained for the visual angle ω,

as shown in Fig. 15.2.

Fig. 15.1 Three radiation

point sources at A, O, and B

on the plane and a receiver

at P
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sin ω=2ð Þ ffi ε sin θ � r

Furthermore, as sin ω=2ð Þ ffi ω=2 when ω is small, the visual angle ω is approxi-

mated by the following equation.

ω ffi 2 ε=rð Þ sin θ

The visual angle takes a maximum value of 2(ε/r) when θ¼ π/2, and is zero when

θ¼ 0. As the total intensity of the γ-ray is constant regardless of θ, the intensity per

unit visual angle becomes very strong (bright) when the visual angle ω, relative to

the elevation angle θ, becomes small. The above considerations are realized when

the paddy field is undisturbed, because the Cs settles from the air onto the soil

surface, and the paddy field surface is artificially flat. Consequently, the undisturbed

paddy fields are very dangerous for people staying in the course of the γ-rays

emitted with a small elevation angle.

Secondly, the shield effectiveness of soil or water against the γ-rays will be

examined. Gamma radiation is an electromagnetic wave, but it behaves as a photon

and is mainly attenuated by electron to γ-ray interactions when it passes through a

substance. The number of photons is attenuated e�μd times when they pass through a

substance having a thickness of d. This μ is called the linear attenuation coefficient,

and μm (¼ μ/ρ, where ρ is density) is called the mass attenuation coefficient (Tazaki

2011). The value of μm is almost constant regardless of the kind of substance, and

therefore the value of μ is nearly proportional to the density of the substance. The

thickness of d0.5, through which the number of photons is halved, is called the half-

value thickness. The values of d0.5 for water, air, and soil are 8.1 cm, 70 m, and

about 5 cm, respectively, for γ-rays emitted from 137Cs (Fujiwara 2011).

Figure 15.3 shows that the pass length is d/sinθ when the thickness is d and the

elevation angle is θ. The reduction ratio of photons is calculated by the following

equation.

Fig. 15.2 Visual angle ω

vs. elevation angle θ when

distance r is much longer

than interval ε
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0:5
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d0:5
� 1

sinθ ¼ 0:5
d

d0:5

� � 1
sinθ

Contrary to this case, the shield effectiveness of water/soil is enormous when the

elevation angle is small, and such shield effect is superior to the amplification effect

due to the low elevation angle. Specifically, if the thickness d is equal to the half-

value thickness d0.5, then the reduction ratios of photons are 1/4, 1/15, 1/55, and

1/3000, and the brightness ratios are 1/2, 1/4, 1/10, and 1/250 when the elevation

angles are 30�,15�, 10�, and 5�, respectively.
The above consideration shows that paddy fields are no longer dangerous if the

radioactive substances are mixed with soil by plowing, the mixed soil is then

saturated with water by puddling, and the paddy fields are kept deeply ponded.

All of these measures can considerably reduce the number of photons that would

otherwise be emitted to the air. They can be especially effective for enabling daily

living spaces, which are in the course of the γ-rays with a low elevation angle.

Figure 15.4 shows the γ-ray radiation from paddy fields to living spaces: (a) the
aspect ratio is normal and (b) the aspect ratio is different to emphasize the height.

Fig. 15.3 Travel length of the γ-ray in the medium of water or soil

Fig. 15.4 Gamma rays radiated from the paddy field to the living space
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It can be seen from Fig. 15.4 that the actual elevation angle of the γ-ray course is

very low, and the pass length in soil/water becomes very long, which will contribute

to attenuation of the γ-ray intensity.

15.3 Field Experiments

Two sections in IITATE village, Sasu and Komiya, were selected for the field

experiments to examine the effects of ponding paddy fields on the reduction of air

radiation. The experiment at Sasu was preliminary and the observation period was

less than 1 month from the 13th of October 2012 to the 10th of November 2012. The

main experiment was at Komiya, where the observation period was 4 months from

the 3rd of August 2013 to 3rd of December 2013.

15.3.1 Field Experiment at Sasu

This section was designated as “zone in preparation for the lifting of the evacuation

order,” and the radiation dose was relatively low. The experimental paddy field was

situated at lat. 37�440 1500 and long. 140�430 4400, and was located at the bottom of a

hill surrounded by forests extending to the west and east.

Figure 15.5 shows the configuration of the paddy fields and locations of obser-

vation equipment for the γ-ray intensity (γ-ray) and ponding depth (WL). The point

A is located at the corner of the paddy field, and the point B is at the center of the

paddy field but is 1 m outside the border. Water was taken from an irrigation ditch

and was drained to the natural stream nearby. Only one paddy field was supplied

with water, but the others were not. However, some partial ponding was observed in

the right-side neighboring paddy field, which received some percolating water that

seeped out from the ridge. A Geiger Müller counter installed 1 m above the paddy

field surface measured the γ-ray intensity. This type of counter, however, cannot

distinguish decaying radioactive elements, and therefore it was difficult to accu-

rately measure radioactive doses.

The amount of 134Cs and 137Cs decreases by natural decay over time. About

2.8 % of 134Cs and 0.2 % of 137Cs decreased in 1 month, but these decreases were

not compensated for in the experiment at Sasu. Figure 15.6a shows the time series

of the γ-ray counting per hour at points A and B. The counts represent the daily

mean because it fluctuated intensely. Figure 15.6b shows the time series of ponding

water levels, the reference of which is the mean altitude of the paddy field surface.

The elevation of point C was about 6 cm lower than the mean value because the

field surface was slightly inclined to the north side, and water depth h¼ 0 cm

corresponds to WL¼�6 cm.

Figure 15.7a shows the relationship between the ponding water level and the

γ-ray counts at points A and B. The radiation counts were observed to decrease by
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4.57 counts at point A and by 6.79 counts at point B, which corresponded to a rise in

water level of 1 cm. Figure 15.7b shows the correlation of concurrent radiation

counts at points A and B, and shows that the decreasing rate at B was 1.43 times

larger than that at A.

Theoretically, the uncollided γ-ray flux can be calculated against the ponding

depth; however, it does not directly correspond to the effective dose because it does

not consider scattering. The flux I, the number of γ-ray photons, which pass per unit

time through an orbicular head having a unit cross section, can be calculated using

the following equation.

Fig. 15.5 Experimental paddy field in Sasu. Section and locations of observation stations for

γ-rays and water levels

Fig. 15.6 Field observations of γ-ray radiation and water level
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where, p is the number of γ-ray photons emitted from unit paddy field area in unit

time, S is the area of the target paddy field, r is the horizontal distance from the

observation point to an element having small area ds, h is the height of the γ-ray

counter, d is the ponding depth, d0.5a is the half-value thickness of air, and d0.5w is

the half-value thickness of water.

The integral α in the above equation depends on ponding depth d, height h, and

paddy field shape, but the latter two do not change; therefore α is a function of d. In

the case where the radiation intensity, p, depends on location and the elapsed time

t after the nuclear accident, and if the value for p is assumed to be same in each

paddy field, then p is only a function of t. The integrals αA and αB are calculated

numerically; the target paddy field of 80 m� 25 m is divided into squares of

0.5 m� 0.5 m, and evenly distributed radioactive substances are assumed to exist

at the center of each square, as shown in Fig. 15.8.

Figure 15.9 shows the numerical results of integrals αA and αB. It is difficult to

directly compare the measured and calculated results in Figs. 15.7 and 15.9;

however, several differences and similarities were observed with regard to the

shielding effect of ponding. Firstly, for the reduction pattern of the γ-rays against

the ponding depth, the γ-ray counts decreased linearly in Fig. 15.7, but the integral α

decreased exponentially in Fig. 15.9.

The effect may be attributed to Compton scattering. The γ-ray counts were

measured by using a Geiger Müller counter, which counts γ-rays scattered by the

Compton effect as well as uncollided γ-rays. In such cases, the γ-ray flux is built up

and “the exponential relation” in Fig. 15.9 may approach to “the linear relation” in

Fig. 15.7. Secondly, regarding the reduction rates at points A and B, those at point A

were 1.4–1.5 times larger than those at point B. This relationship is seen commonly

Fig. 15.7 Relationship between γ- ray counts and ponding depth at points A and B
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Fig. 15.8 Paddy field and observation points A and B for numerical calculation of uncollided γ-

ray flux. Paddy field is divided into squares of 0.5 m� 0.5 m and distributing radioactive

substances are assumed to be concentrated at the center of each square

Fig. 15.9 Relationship between integral α and ponding depth at A and B
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in the measured and calculated results presented in Figs. 15.7 and 15.9. Theoretic-

ally, the reduction rate at B was 2.0 times that at A, if the sensor was set on the

border of the paddy field, but actually it was set 1 m outside the border. In any case,

if the ponding depth is kept at about 20 cm, then the uncollided γ-ray flux is reduced

to 2 % of the original flux intensity, and the γ-ray reduction effects by the water

ponding are confirmed to be significant.

15.3.2 Field Experiment at Komiya

This section is designated as a “restricted residential area,” and the experimental

paddy fields are situated at lat. 37�370 3100 and long. 140�460 3700 and are surrounded
by forests. Figure 15.10 shows the configuration of the paddy fields and the

locations of observation equipment for the γ-ray intensity (γ-ray) and ponding

depth (WL). Two paddy field plots were used for the experiment. Ponding depths

were measured at point F for the left side plot and at point G for the right side plot

using U20 water level loggers (Onset Computer Corporation).

The radiation doses were measured at points D and E using GPSGMC-002-TUV

loggers (SERIALGAMES Inc.). Point D is on a road, and on both sides of the road

are paddy fields. The detailed location is 0.5 and 2.5 m from the left side and right

side borders, respectively. Point E is in front of the house and is located 0.5 m

outside the paddy field border. Other paddy fields and upland fields are nearby two

experimental fields, and forests surround all these fields. These fields and forests are

possible sources of γ-ray background, but it is considered to change only mildly

Fig. 15.10 Experimental paddy fields in Komiya section and locations of observation stations for

γ-rays and water levels
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even if it changes seasonally. Figure 15.11 shows the time series of ponding depths

at points F and G. The observation period was divided into four for convenience:

the August term was from the 3rd to the 31st August with relatively deep ponding

depth; the September term was from the 1st to the 28th September with very deep

ponding depth; the October term was from the 29th September to the 5th November

with very shallow ponding depth; and the November term was from the 6th

November to the 3rd December with relatively deep ponding depth.

Figure 15.12 shows the time series of radiation doses at points D and E. At the

point E, no data were recorded during the September term because of equipment

issues. The observation period at Komiya was 4 months, which is too long to ignore

the natural decay, and some kind of correction was needed to compensate for the

decrease in radioactivity.

The radiation dose for each day was corrected to the equivalent dose on the 3rd

of August assuming the following conditions: the Becquerel (Bq) abundance ratio

of 134Cs and 137Cs was 1:1 at the beginning, their half-lives are 2.06 and 30.2 years;

the conversion ratio from Bq to Sievert (Sv) is 5.5: 2.1, and the elapsed time is

870 days from the day of the accident to August 3. The black line in Fig. 15.12

shows the before correction dose and the gray line shows the after correction dose.

The dose decreased by ~8 % during the 4 months.

Fig. 15.11 Time series of water depth at F and G

Fig. 15.12 Time series of γ-ray radiation dose at D and E. Black line: raw data. Gray line:

corrected data considering decay
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Figure 15.13 presents the relationship between the radiation dose at point E and

the ponding depth of the right side paddy field (observed at point G). A clear

spreading of data can be seen between the early and late data in Fig. 15.13a which

uses raw data, but such a spreading of data cannot be seen in Fig. 15.13b which uses

corrected data. Considering the above results, our analyses from this point on will

use corrected data (values equivalent to those on August 3rd). The radiation dose

corresponding to the increase of the ponding depth decreased exponentially,

although it decreased slowly. The regression curve of the radiation dose y (μSv/h)

may be approximated by an exponential function of depth h (m) as follows.

y ¼ 2:38þ 1:16� Exp �8:38� hþ 0:05ð Þð Þ
¼ 3:54� 1:16� 1� Exp �8:38� hþ 0:05ð Þð Þf g

ð15:2Þ

This equation shows that the radiation dose was 3.54 (μSv/h) if the field was not

ponded (h¼�0.05 m, because of the uneven field surface), but it decreased to 2.38

(μSv/h), which corresponds to background radiation, if the γ-rays from the relevant

field were perfectly obstructed.

Figure 15.14 shows the time series of the radiation dose at E; the solid line is

observed and the dotted line is estimated from the depth at point G using this

regression curve. This regression curve can complement the lack of data, but it

tends to overestimate dose values when they are large.

Although point E is scarcely influenced by the far left side paddy field, point D is

surely influenced by paddy fields on both sides. Figure 15.15a shows the relation-

ship between the radiation dose at D and the averaged ponding depth at F and

G. The plotted points are distributed over a wide range, especially the scattered

points marked by Δ which were observed in November when the ponding depths at

either side were considerably different. Figure 15.15b shows the relationship

between the radiation dose at D and the ponding depth at point F in the left side

paddy field; the plotted points are still distributed over a wide range.

Fig. 15.13 Radiation dose at E (in front of the house) vs. ponding depth at G (right side paddy

field)
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To make the relationship clear between the radiation dose at D and the ponding

depth at F, the influence of the right side paddy field must be removed. Accordingly,

a numerical calculation of uncollided γ-ray flux was utilized to estimate the

influence of the right side paddy field on radiation doses at points D and F. The

shape of the right side paddy field is a distorted rectangle as seen in Fig. 15.10, but it

is approximated to a rectangle in Fig. 15.16 with the point D being 2.5 m from the

long side border and the point E being 0.5 m from the short side border. As the value

of p in Eq. (15.1) was assumed constant, the radiation doses at D and F are

proportional to the integrals αD and αE, respectively.

If αD0 is the integral at point D when water is not ponded, then the value of

αD0 � αDð Þ is the decrement caused by ponding water, and similarly for point

E. This means that the decrement at point D, when the right side paddy field is

ponded, is αD0 � αDð Þ= αE0 � αEð Þ times the decrement at point E. Figure 15.17

shows the results of numerical calculation of uncollided γ-ray flux; (a) shows

integrals of αD and αE vs. ponding depth at point G, and (b) shows the ratio

αD0 � αDð Þ= αE0 � αEð Þ. As the radiation dose at point E vs. ponding depth at

point G was formulated by Eq. (15.2), the reduction effect Δy by ponding can

also be formulated by the following equation.

Fig. 15.14 Estimated radiation dose at E using a regression curve

Fig. 15.15 Radiation dose at D (on the road) vs. ponding depth
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Δy ¼ 1:16� 1� Exp �8:38� hþ 0:05ð Þð Þf g

The radiation dose at point D, when the depth at F is variable but the depth at G is

maintained at�0.05 m, can be estimated by addingΔy� αD0 � αDð Þ= αE0 � αEð Þ to
the observed radiation dose at D.

Figure 15.18 shows the estimated radiation dose at D vs. ponding depth at F in

the left side paddy field. Compared to the relationship in Fig. 15.15, the radiation

dose is more clearly related with ponding depth. The regression curve for plotted

points in Fig. 15.18 can be formulated using an exponential function as follows.

Fig. 15.17 Numerical integral at D and E to compare radiation doses

Fig. 15.16 Approximated paddy field for numerical integration. D: Gamma ray observation point

on the road. E: Gamma ray observation point in front of the house
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y ¼ 3:90þ 1:06� Exp �7:59� hþ 0:04ð Þð Þ
¼ 4:96� 1:06� 1� Exp �7:59� hþ 0:04ð Þð Þf g ð15:3Þ

This equation implies that the radiation dose at point D is 4.96 (μSv/h) if both paddy

fields are not ponded, but it will go down to 3.90 (μSv/h) if the ponding depth of the

left side paddy field is deep enough. Furthermore, if both paddy fields are deeply

ponded, then the radiation dose is reduced to 3:90� 1:16� 0:6 ffi 3:20 (μSv/h).

When the two regression equations of Eqs. (15.2) and (15.3) are compared, the

background radiation doses are slightly different, 3.54 (μSv/h) at E and 4.96 (μSv/h)

at D; the potential decrements are similar, 1.16 (μSv/h) at E and 1.06 (μSv/h) at D;

and the constants of exponent are also similar, �8.38 at E and �7.59 at

D. However, in case of the uncollided γ-ray flux shown in Fig. 15.17a, the constant

of the exponent ranges from �20 to �30 and is fairly different from those in

Eqs. (15.2) and (15.3). This difference may be attributed to Compton scattering, but

the details are unclear.

15.4 Conclusions and Remaining Problems

Through numerical calculations and field experiments we confirmed that paddy

fields are potential threats to nearby residents. However, the γ-ray flux levels, and

thus the severity of such threats, can be considerably reduced by deeply ponding

these fields. Moreover, before implementing paddy field ponding, certain problems

must be solved. First, the differences between numerical and field experimental

results should be quantitatively explained; when the ponding was deepened, the

uncollided γ-ray flux decreased exponentially and rapidly, but the radiation dose

decreased linearly and gradually. These differences might cause gross errors when

the ponding effects are evaluated. Second, water must be deeply and steadily

ponded for a long period in the paddy fields. The maximum depth in this field

experiment was around 20–25 cm. The following two questions, relating to the

Fig. 15.18 Estimated

radiation dose vs. ponding

depth at F if ponding depth

at G was kept at �0.05 m
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maximum depth, should be solved: (1) Is this depth deep enough to shield the

γ-rays; and (2) Is it possible to maintain this maximum depth over long periods?

According to the numerical calculations, this maximum depth could obstruct nearly

all of the uncollided γ-rays, but it is not clear whether this depth can obstruct all

effective γ-rays, including the scattered rays. Moreover, it is not easy for an

ordinary paddy field to maintain water depths between 20 and 25 cm. Paddy field

levees are usually not so high and strong, except for those used for deep ponding

irrigation and rainwater storage. They is also not protected against cold weather

damage. The heights of levees are usually within the range of 20–30 cm, and the

ponding depth is usually no more than 50–60 % of the levee’s height for stability.

Levee improvement for deep ponding should be examined. The ponded water is

continuously lost by evapotranspiration and infiltration, and water must be supplied

continuously to maintain ponding. The water supply should not contain Cs, there-

fore the water quality must be monitored and the standard for water intake should be

examined. Paddy field ponding has various merits as mentioned before, but at the

same time there remain several problems to be solved before it can be implemented.
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Chapter 16

Collaboration Structure for the Resurrection
of Iitate Village, Fukushima: A Case Study
of a Nonprofitable Organization

Hanae Yokokawa and Masaru Mizoguchi

Abstract Iitate village in Fukushima was evacuated after the Fukushima Daiichi

Nuclear Power Plant accident due to the high concentration of radioactive contami-

nation. To revive the serious disaster area, residents, universities, research insti-

tutions, experts, and volunteers have collaborated through the nonprofitable

organization “Resurrection of Fukushima.” The organization is functioning effec-

tively and smoothly based on the members’ background, personal connections, and

experiences.

Keywords Fukushima Iitate village • Collaboration • Volunteer • Nonprofitable

organization (NPO)

16.1 Introduction

Iitate village in Fukushima was evacuated after the Fukushima Daiichi Nuclear

Power Plant accident in 2011. High concentrations of radioactive cesium were

scattered throughout the village and now the residents from the area are looking to

revive the village.

In June 2011, some senior volunteers and researchers started up a NPO

(nonprofitable organization) to reconstruct the village in cooperation with the

residents. It began with just a few people, but now it involves residents, universities,

research institutions, experts, and volunteers.
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This chapter examines the NPO “Resurrection of Fukushima” and reveals the

structure of the collaboration system among residents, universities, research insti-

tutions, experts, and volunteers. In addition, the chapter focuses on the cooperation

of the NPO and a group “Madei club,” which consists of volunteers empathizing

with the activity of the NPO and are working as staff of the Graduate School of

Agricultural and Life Sciences at the University of Tokyo.

These cooperative frameworks are proposed as a realistic structure of collabo-

ration among residents, universities, research institutions, experts, and volunteers.

16.2 NPO: Resurrection of Fukushima

The NPO was established in June 2011 by senior volunteers who live in Tokyo. The

number of members was 261 on December 17, 2014. The members have various

backgrounds such as retired office workers, active researchers, residents, and retired

government officials. The core members of this NPO are elderly, around 70 years

old (Fig. 16.1). The main activities are various field practice, which include

measuring soil and air radioactivity; monitoring radiation, weather, and soil; devel-

oping decontamination methods; and trialing new industries for industrial recon-

struction. The results from these practices are presented on the website

(Resurrection of Fukushima).

Fig. 16.1 Core members

have a meeting
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16.3 Collaboration Style of the Various Members

16.3.1 Collaboration Between Residents, Universities,

and Research Institutions

Figure 16.2 shows the conceptual view of the collaboration in projects organized by

“Resurrection of Fukushima.” It has various professionals like researcher,

medical worker, farmer, educator, journalists, and also the residents of the village.

The NPO has connections with residents, universities, and research institutions, and

it associates with them and plays a role to accelerate projects.

Case 1 Some members of this NPO are retired researchers. They form partnerships

with research institutions easily by using their human network that they have built

through their research. As a result, the NPO can ask the University of Tokyo

and KEK (High Energy Accelerator Research Organization) to analyze the experi-

mental samples containing radioactive materials (Arai et al. 2013).

Case 2 The members can use their expertise and technology to boost the ideas

proposed by residents’ ideas that are based on their local knowledge and lives.

Specifically, they use experts at universities and research institutions to plan and

conduct experiments that obtain data and evidence for realizing the residents’ ideas.

Case 3 Some members are retired government officials who can deal with admini-

strative procedures and issues, and thus enable projects to proceed smoothly.

These cases illustrate that the NPO supports the cooperation between residents,

universities, and research institutions, and that they use the various backgrounds,

human networks, experiences, and the expertise of various members.

Fig. 16.2 Collaboration

structure
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16.3.2 Cooperation with a Volunteer Group from

the University of Tokyo

Samples collected in Iitate by NPO members are analyzed by researchers at the

University of Tokyo. Each sample is packed into a small bottle for the analysis of

radioactivity, which is time and labor consuming. To solve this problem, the group

of volunteers in the “Madei club” assist with sampling and packing (Fig. 16.3). The

volunteer group was established by staff at the university. The “Madei” is a local

dialect word which means “heartful” in Iitate village. The volunteers sympathize

with the activity of the NPO and want to do something for the village people. They

volunteer during their lunch breaks and after their official work.

This is a significant case that illustrates the vast levels of cooperation within this

project. This structure also enables volunteers who do not have a particular skill to

support the NPO projects through the activities of the “Madei club”.

16.4 The Motive for Activity

The motivation for action in this NPO is different for each person, particularly

because the people have different backgrounds (Arai et al. 2013). Table 16.1 shows

a classification of some common motives collected by interview. The motives

include those which are related to helping people in Fukushima, such as

“companionship” and “the sense of mission that our generation should take

responsibility for the accident”. Other motives that are important for participation

include those related to enjoying the activities with “Resurrection of Fukushima”

such as “fun to make new friends and meet new people”.

Fig. 16.3 Poster of the “Madei club”

208 H. Yokokawa and M. Mizoguchi



Table 16.1 Classification of the motivations for participation

Motive The voice of the member

Companionship “I take part in the efforts because the victims and I

are from the same hometown. I want to feel I can

do something for them”

Feeling of pride in using the most advanced

technology for decontamination

“I’m proud that our method of decontamination is

the most advanced”

“I feel that we are getting good results from

decontamination”

Pleasure that their volunteer work matches

with local people’s demands

“I think there are many people that feel happy to

work for other people’s lives. Being helpful for

other people’s demands is a very important reason

for participating in this volunteer organization”

A sense of mission that our generation

should take responsibility for the accident

“I think it’s difficult for young people to work for

the reconstruction for their entire life, because

they have many things they want to do. Old people

have the responsibility for this problem and should

deal with it”

Fun to make new friends and meet with

new people

“It’s fun to meet new people and make new

friends. Something fun or interesting is an impor-

tant factor for continuing our activity. Local peo-

ple are also having fun participating”

To know the real situation “To know what people really think in Fukushima,

it’s necessary to go there”

Table 16.2 Perspectives of the students who visited Iitate village and participate in “Resurrection

of Fukushima”

Impression for The voice of the visitor

“Resurrection of

Fukushima”

“Resurrection of Fukushima is a necessary platform for everyone who

wants to help the village”

“Everyone is so lively and energetic (despite being old). I can’t lose!”

Iitate village “My initial image of the village was like a village without people. But

there was such collaboration between people inside and outside”

“Iitate looks like a ghost town. Everything is intact but deserted. It’s a

beautiful town, so it’s a shame!”

“I was shocked when I heard that some evacuated people were dis-

criminated against because of unfounded fear of radiation”

What we should do “The first step of support is to know and interact with local people”

“What we should do is to visit and see the real situation”

“It is important to tell the right insight and technology”

“Our responsibility is to tell everyone the current situation of the village

and activities of the NPO”

“The studies of my major contributed with the reconstruction in the

village. I work hard and I want to help them”
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16.5 Perspectives of Visitors

Every year many people visit the village and participate in “Resurrection of

Fukushima” to know the real situation in the contaminated area and to see the

NPO activities (Arai et al. 2013; Osada 2013). In particular, many of the university

students who cooperate with the NPO have visited. Table 16.2 presents the per-

spectives on the village and on the NPO from the students of University of Tokyo,

Mie University, and Saga University.

16.6 Conclusion

While residents, universities, research institutions, and volunteers share the goal to

reconstruct the disaster area, each member tends to act separately and the task of

cooperating with each other is difficult. In these cases, however, the various

members can cooperate smoothly through the NPO “Resurrection of Fukushima”.

The most important key for collaboration is the connection of people. The group of

people who have various backgrounds, experiences, human networks, and motiva-

tions is the most suitable mediator to connect separate members.

The disaster area looks like a “ghost town”, because the terrible disaster deprived

the town of many important things. However, a new style of cooperation in research

and in practice with researchers, volunteers, and local residents has arisen from

such a situation. The style will become a seed for new agricultural sciences in the

future.
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Photos of Activities in Iitate Village

Soil cutting work by “Madei club” members who are working in University of Tokyo (Feb.

24, 2015)

Soil sampling under snow by collaboration of different generations (Feb. 17, 2013)
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Decontamination by forced drainage of puddling muddy water by collaboration of a local farmer

and NPO members. (May 18, 2013)

Handshake by local farmers, NPO and university after harvesting rice on decontaminated paddy

field (Oct. 6, 2013)
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The NPO representative, Mr. Tao, is reporting the result of survey in Residents briefing (Apr.

12, 2015)

The NPO representative, Mr. Tao, is explaining its activity in a paddy field after harvesting in Iitate

for young generation (Oct. 27, 2013)
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Chapter 17

Impacts of the Nuclear Power Plant Accident
and the Start of Trial Operations
in Fukushima Fisheries

Nobuyuki Yagi

Abstract The large-scale release of radioactive substances from the Fukushima

Daiichi Nuclear Power Plant operated by the Tokyo Electric Power Company in

March 2011 caused significant damage to local fisheries. The Fukushima Prefec-

tural Federation of Fisheries Cooperative Associations immediately suspended all

commercial fishing activities within Fukushima. The national government issued

instructions prohibiting the sale of certain marine products caught in the waters off

Fukushima Prefecture due to food safety concerns. The prohibition is gradually

being lifted; in June 2012, the Fisheries Cooperative Associations resumed com-

mercial fishing of three species (two octopus species and one shellfish species) as

trial operations. Subsequently, the list has expanded, and as of January 2015,

58 species have been approved for trial operations. The scale of operations is far

smaller than before the tsunami and nuclear accident. A full recovery of Fukushima

fisheries cannot be realized until the government lifts prohibitions on the sale of all

remaining marine species, and the timing of such a decision remains unclear.

Keywords Cesium • Fukushima • Radioactive substances • Trial fishery

17.1 Introduction

The tsunami on March 11, 2011 damaged around 29,000 fishing boats and 319 fish-

ing ports in Japan (Fisheries Agency of Japan 2014a). Each of these figures

accounts for approximately 10 % of the respective national totals. Since October

31, 2014, approximately 17,713 of these boats and 302 of the ports have again

become operational (Fisheries Agency of Japan 2014a). Despite the unprecedented

scale of the disaster, the rehabilitation of the fisheries in the tsunami-damaged

areas, excluding Fukushima Prefecture, has been relatively expeditious in terms of

fishing capacity as measured by the number of boats and ports (Yagi 2014).

N. Yagi (*)

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi,

Bunkyo, Tokyo 113-8657, Japan

e-mail: yagi@fs.a.u-tokyo.ac.jp

© The Author(s) 2016

T.M. Nakanishi, K. Tanoi (eds.), Agricultural Implications of the Fukushima

Nuclear Accident, DOI 10.1007/978-4-431-55828-6_17

217

mailto:yagi@fs.a.u-tokyo.ac.jp


In Fukushima Prefecture, significant damage has been caused by the large-scale

release of radioactive substances from the Fukushima Daiichi Nuclear Power Plant

operated by the Tokyo Electric Power Company (TEPCO). The recovery of fishing

capacity has been slower in Fukushima than in the other two tsunami-damaged

prefectures, namely Iwate and Miyagi. A total of 873 fishing vessels were damaged

by the tsunami in Fukushima Prefecture (Ministry of Agriculture, Forestry and

Fisheries, Japan 2012). As of October 31, 2014, 327 fishing vessels and 8 fishing

ports in Fukushima Prefecture have been repaired or reconstructed (Fisheries

Agency of Japan 2014a). Nonetheless, as of January 2015, most fisheries in

Fukushima have not been able to resume their commercial operations due to

nuclear damage.

This chapter of the book reviews the state of fisheries in Fukushima since the

nuclear power plant accident. It also provides precise records regarding the start of

trial operations in June 2012. Finally, the discussion section is provided that

considers future options for fisheries in Fukushima.

17.2 Commercial Fisheries in Fukushima Before and After
the Disaster

Within the waters of Fukushima,1 roughly 10 different fisheries were being oper-

ated until the nuclear accident in 2011. These fisheries included bottom trawling,

mid-water trawling, purse seine, gill net, saury dip net, trap net, long line, line and

pole (jigging), pot fishery, and hand gathering. The national and prefectural gov-

ernments set a licensing system and various regulations, such as total allowable

catches (TACs) for several species, restrictions on gear use, and restricted areas of

operations for each fishery. While purse seine and saury dip net fisheries can be

operated both inside and outside the waters of Fukushima, the other eight fisheries

were in principle only allowed inside the waters of Fukushima.

The average landing volume of fisheries in Fukushima before the disaster was

approximately 50 thousand metric tons per year (Fukushima Prefecture 2011,

2012). Of these, bottom trawling, mid-water trawling, and purse seine fisheries

were the three major fisheries. Table 17.1 provides an overview of the areas of

operations, the main target species, and the average annual landing volumes before

the nuclear accident.

Figure 17.1 provides time series data on annual landings. On average, approxi-

mately 40–50 thousand metric tons of annual landings were recorded by Fukushima

fisheries before the disaster, but this decreased to less than 5 thousand metric tons

after the nuclear accident (Fukushima Prefecture 2011, 2012, 2013). Landings from

1The term “waters of Fukushima” used in this chapter refers to ocean areas bounded by the

coastline of Fukushima Prefecture, the outer limit of Japan’s Exclusive Economic Zone, and the

boundaries with Miyagi and Ibaraki prefectures (see Fig. 17.2).
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Table 17.1 Fisheries in Fukushima before the nuclear accident

Type of fishery Main target species

Area of

operation

Annual landing (in metric

tons)

Bottom trawling Pacific cod, flatfish,

octopus

Offshore 10,588

Mid-water

trawling

Sand lance larvae

(whitebait)

Coastal 10,156

Purse seine Skipjack tuna, mackerel Offshore/

outside

18,253

Gill net Spanish mackerel,

yellowtail

Coastal/

offshore

2496

Saury dip net Pacific saury Offshore/

outside

5803

Trap net Chum salmon, sea bass Coastal 276

Long-line Pacific cod Coastal 207

Line and pole,

jigging

Skipjack tuna, bigeye

tuna

Coastal/

offshore

1111

Pot fishery Octopus, shellfish Coastal/

offshore

1098

Hand gathering Shellfish, seaweed Shoreline 84

Source: Compiled by the author based on information available from the Fukushima Prefectural

Government

“Annual landing” refers to the average annual landing reported from 2001 to 2010 at ports in

Fukushima Prefecture. The figures include landings by Japanese fishing boats registered in both

Fukushima and other prefectures in Japan. They do not include landings by Fukushima vessels at

ports outside of Fukushima Prefecture. “Offshore/outside” refers to offshore areas of waters in

Fukushima and other prefectures in Japan. “Offshore/coastal” refers to both offshore and coastal

areas in Fukushima Prefecture
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Fig. 17.1 Commercial landings from fisheries in Fukushima. These figures include landings by

Japanese fishing boats registered in both Fukushima and other prefectures in Japan. They do not

include landings by Fukushima vessels at ports outside of Fukushima Prefecture. Landings from

“trial fishing” after June 2012 are not included (Source: Fukushima Prefecture 2011, 2012, 2013)

17 Impacts of the Nuclear Power Plant Accident and the Start of Trial. . . 219



2012 to 2013 were harvested with purse seines and saury dip net fisheries outside

the waters of Fukushima and then landed in the ports of Fukushima Prefecture. The

landings in 2011 include ordinary commercial harvests from January to March

11, 2011.

17.3 Initiation of Trial Operations in Fukushima Fisheries

As a result of the large-scale release of radioactive substances from the Fukushima

Daiichi Nuclear Power Plant following the earthquake and tsunami of March

11, 2011, the Fukushima Prefectural Federation of Fisheries Cooperative Associa-

tions (hereafter referred to as the Fukushima FCA) decided on March 15, 2011 to

voluntarily stop fishing operations in the waters of Fukushima (Yagi 2014). Some

fishing activities in the prefectures neighboring Fukushima (namely Miyagi and

Ibaraki) were also suspended after the TEPCO accident, but most of these were

subsequently reopened within 2 years (Ibaraki Prefecture 2014; Miyagi Prefecture

2014).

Neither the national nor the prefectural governments revoked fishing licenses in

Fukushima. However, the national government did provide legally binding sales

prohibitions on certain marine products caught in the waters off Fukushima Pre-

fecture based on the food safety requirements. The Japanese government set the

allowable level of radioactive cesium for all fisheries products as 500 Bq/kg until it

was reduced to 100 Bq/kg on April 1, 2012 (Fisheries Agency of Japan 2014b). In

addition, species-specific prohibitions on sales and marketing for specific agricul-

tural and fishery products, originating from certain areas were introduced by the

government regardless of the actual measured levels of radioactive substances.

Many of the fishers in Fukushima have been receiving a certain level of

compensation from TEPCO since the nuclear accident (Yagi 2013). According to

the law, the nuclear power plant operator TEPCO should compensate fishers for

stopping their operations in Fukushima (Fisheries Agency of Japan 2012).

Although TEPCO is paying compensation, many fishers have complaints. Some

fishers are unable to submit evidence that could be used to calculate the amount of

actual damage, because sales slips dated before the accident were lost during the

tsunami, resulting in inappropriate compensation to such fishers. Processing and/or

distribution companies are considering leaving Fukushima, as they cannot get

adequate compensation. Furthermore, fishers can neither estimate how long they

need to cease their operations nor make long-term plans for the future (Yagi 2013).

Within this context, the Fukushima FCA launched the “Fukushima Prefectural

Fisheries Reconstruction Committee” in 2012 with the aim of reconstructing the

fisheries industry and restarting fisheries operations. The author is a member of this

committee and took note as a participant that the committee discussed issues

including the following (Yagi 2014).
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• From January 1, 2012 to June 4, 2012, Fukushima Prefecture analyzed 2118

samples of marine organisms collected from the waters of Fukushima. The

survey showed that the level of radioactive substances in fish is site-specific.

The levels were higher in samples collected near the nuclear plant and became

lower in samples collected in deeper ocean areas. The levels of radioactivity are

also species-specific and invertebrate species contained less cesium in 2011 and

levels dropped to zero in 2012.

• On the other hand, as of June 2012, more than 100 Bq/kg of radioactive cesium

was still being recorded in Japanese sea bass and other fish species living along

the coast.

• An independent biological study has showed that fish species have their own

function for excreting cesium from their bodies (Furukawa et al. 2012).

• These findings are consistent with the International Atomic Energy Agency

(IAEA) report that shows marine invertebrate animals have low concentration

factors compared with fish (figures calculated by dividing the level of cesium

contained in the body by the level of cesium contained in the water) (IAEA

2004).

In June 2012, after taking into account the above information considered by the

Fukushima Prefectural Fisheries Reconstruction Committee, the Fukushima FCA

decided to resume fishing activities, named as “trial operations,” for three species

(two octopus species and one shellfish species) living at depths of more than 150 m

in ocean areas approximately 60–90 km from the damaged nuclear power plant.

Because the government did not revoke fishing licenses for fishers in Fukushima

after the nuclear power plant accident, the fishers were left to decide for themselves

whether to resume commercial fisheries by targeting species that met government

food safety standards.

The trial operation has several limitations, and therefore it is not regarded as a

full resumption of commercial fisheries. The limitations include: (1) days of

operation (usually fewer than 5 days a month); (2) landing ports (only two ports

have been designated: one in Soma and the other in Iwaki); (3) the amount of landed

fish (usually less than 10 tons a day); and (4) the number of vessels involved in

fishing operations (Yagi 2014). Operation rules are set in order to maintain a high

frequency of monitoring for radioactive substances and to ensure traceability

following landing of marine products.

Figure 17.2 shows the areas for trial operations. Initially the trial operations for

bottom trawling were only allowed in Area 1. This area was expanded to include

Area 2 in October 2012, Area 3 in February 2013, Area 4 in May 2013, Area 5 in

August 2013, and Area 6 in December 2013. The pot fishery was limited to Areas

1, 2, 3, and 4 in 2013. Trial operations for mid-water trawling started in March 2013

and are allowed in Area A. In February 2014, such operations were added to

Area B.

The Fukushima FCA for a certain number of samples conducts monitoring of

radioactive cesium at landing sites. These samples are randomly selected, but they

do not cover every fisheries product, and because the testing method involves
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grinding up the fish, the tested samples are not marketable afterwards. When any

product exceeds the Fukushima FCA’s voluntary standard level,2which is 50 Bq/kg

of radioactive substances, all products are immediately recalled (Yagi 2014).

Landed octopus and shellfish have been sold with labels indicating Fukushima as

their point of origin (Yagi 2014). Most of these products were sold at local

supermarkets in Fukushima, and sold out very quickly, most likely due to the

small quantity of available items and a number of consumers wishing to help

their local fishers by purchasing their products (Yagi 2014).

Figure 17.3 indicates the scale of the trial operations. As of January 2015, the

trial operations are only being allowed for bottom trawling, mid-water trawling, and

 

Soma City 

Iwaki City 

Fukushima Daiichi 

Nuclear Power 

Plant 

Fig. 17.2 Areas for trial operations (Source: Fukushima FCA http://www.fsgyoren.jf-net.ne.jp/

siso/buhin/kaiiki20140827.pdf)

2Although the threshold set by the government is 100 Bq/kg, the Fukushima FCA decided to set a

more conservative limit of 50 Bq/kg as its voluntary standard.
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pot fishery. The monthly average landing of the three fisheries used to be around

1200 gross tons before the disaster in March 2011. The landings under the trial

operations, however, are around 40 gross tons per month, or approximately 1/30th

of those recorded before the disaster.

The committee also discussed how some consumers are likely to object to the

limited resumption of fishing activities due to concerns that fishing operations

should not be allowed at all when there is a risk of consumers ingesting radioactive

substances contained in fish products (Yagi 2014). Some consumers may also

object to only checking radioactive substances in some samples and not in the

full catch. The committee argued that “Each individual has a right to select what

they want. Rather than trying to persuade consumers that Fukushima products on

the market are safe, it is better to clearly label the products as originating from

Fukushima and to allow consumers to make their own decisions about consumption

behavior” (Yagi 2014).

The number of species allowed under the trial fishery operations gradually

expanded in 2012: seven species were added in August, and another three species

were added in November. An additional 18 species were added to the list over the

course of 2013. Thus, a total of 31 species were subject to trial fishery operations as

of February 2014 (Fukushima FCA 2014). The number subsequently increased, and

58 species are now allowed under the trial fishery operations as of January 2015.
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Fig. 17.3 Monthly landings of commercial fisheries before the nuclear accident in March 2011

and since trial operations started in June 2012. Data were compiled by the author using information

available from Fukushima Prefecture

17 Impacts of the Nuclear Power Plant Accident and the Start of Trial. . . 223



17.4 State of Radioactive Substances in Marine Species

Since the nuclear power plant accident in March 2011, various governmental

institutes have collected and analyzed samples of marine organisms and released

information on levels of radioactive substances. One of the most extensive datasets

for the testing results is available through the website of the Fisheries Agency of the

Government of Japan (http://www.jfa.maff.go.jp/j/housyanou/kekka.html). The

data includes information on each analyzed sample with respect to its species

name, sampling area, its level (Bq/kg) of radioactive cesium 134 and 137, date of

sampling, and the name of the institution that analyzed the sample. Data are

available for 27,283 samples collected inside Fukushima Prefecture and another

39,228 from outside of Fukushima Prefecture. Of the samples collected outside

Fukushima, approximately 6.5 % of the samples of marine species contained

radioactive cesium above 100 Bq/kg between March and June 2011. From July

2011 to March 2012, approximately 5 % of the samples contained radioactive

cesium above 100 Bq/kg. The proportion of samples that contained radioactive

cesium above 100 Bq/kg gradually decreased during 2012. Since 2013, less than

1 % of samples collected outside the waters of Fukushima contained radioactive

cesium above 100 Bq/kg.

The status of samples collected from within the waters of Fukushima is some-

what different (see Fig. 17.4). Fukushima Prefecture has regularly been collecting

samples of marine species from all areas across the waters in Fukushima since

March 2011. In April 2011, 13 samples were collected, and it was found that 12 of

them (92 %) contained radioactive cesium over the level of 100 Bq/kg (Fukushima

Prefecture website: http://www.pref.fukushima.lg.jp/sec/36035e/suisanka-monita-

top.html). Thereafter, 32 samples out of 47 (68 %) in May, 72 samples out of

145 (50 %) in June, 95 samples out of 201 (47 %) in July, and 103 samples out of

238 (43 %) samples in August contained radioactive cesium in excess of 100 Bq/kg.

During this early period after the disaster, the monthly sample size was less than

300, but this has subsequently increased to around 700 samples per month (see

Fig. 17.4). From September 2011 to April 2012, more than 20 % of the sampled

marine species contained radioactive cesium over 100 Bq/kg. For the first half of

2013, 3–8 % of samples contained cesium over 100 Bq/kg, and after July 2013, the

proportion dropped to 0–2 %.

Detailed outcomes of the tests above are also available from Wada et al. (2013).

Several other analyses have also been published by independent researchers from

outside the government. Kikkawa et al. (2014), for instance, used published data for

8683 samples of aquatic animals and plants obtained off the coast of Fukushima

from 2011 to 2013 and evaluated the level of radioactive cesium (134Cs and 137Cs)

for 95 species (a total of 97 fishery items including two species that are marketed

separately at the adult and immature stages). A cluster analysis based on parameters

of annual average and standard deviation of radioactive cesium concentration levels

indicated that the 97 items can be categorized into four groups. The first group had

lower concentrations and lower variability across the first and second years
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(60 items); the second group showed a decline in concentration levels in the second

year, but remained high (21 items); the third group had extremely high initial

concentrations, but levels became almost undetectable in the second year

(1 item); and the fourth group exhibited high contamination levels across the

2 years (15 items) (Kikkawa et al. 2014). The researchers argue that almost all of

the items in the first and third groups satisfied the government’s food safety

standards in the second year. On the other hand, products in the second and the

fourth groups do not satisfy these standards, and must be closely monitored

(Kikkawa et al. 2014).

The names of species that are subject to sales prohibitions have been announced

by the Government of Japan. The sales prohibition is legally binding and the

government periodically revises the list based on the best available information.

Since December 2013, the prohibition has been in effect for 40 marine species

living in the waters of Fukushima (Fukushima Prefecture 2014), and since January

2015, it has been reduced to 35 species (Fukushima Prefecture 2015).

On the other hand, the target species for the trial operations are decided by the

Fukushima FCA in consultation with the Fukushima Prefectural Fisheries Recon-

struction Committee, and they discuss the most recent testing results for radioactive

substances in all marine species. As of January 2015, 58 species are allowed for trial
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operations. In sum, approximately 200–300 marine fish and invertebrate species

occur in the waters of Fukushima, and 58 of these are targeted by the trial

operations, while 35 other species are prohibited for sale due to government

regulations. The rest are still subject to monitoring for radioactive substances by

research institutions, but are not treated as species for trial operations.

As mentioned earlier in this chapter, all products are immediately recalled if any

product exceeds 50 Bq/kg of radioactive cesium. On February 27, 2014, such an

incident happened for the first time. A sample taken from one particular species of

ocean perch (Helicolenus hilgendorfi: Japanese name yumekasago) was measured

as having 112 Bq/kg of radioactive cesium. The sample was measured using a

regular checking process conducted by the Fukushima FCA at the landing site in

Iwaki. The Fukushima FCA immediately decided to stop distributing yumekasago

from Iwaki.

The same species was also landed on the previous day (February 26, 2014) at

Soma, which is the other port designated as a landing site for the trial operations.

Although yumekasago samples inspected at Soma were below the 50 Bq/kg thresh-

old, the Fukushima FCA decided to recall all yumekasago landed at Soma the

previous day from the middlemen and retail stores. According to the records of the

Fukushima FCA, 33.5 kg of yumekasago were landed on February 26, 2014. Some

had already been sold to consumers, but retail stores posted a message to consumers

that they would recall the product and provide the corresponding refund.

All yumekasago from the waters of Fukushima disappeared from the market

from 27 February until September 1, 2014, when the Fukushima FCA decided to

restart trial operations and distribution for this species based on the consensus

decision of the Fukushima Prefectural Fisheries Reconstruction Committee,

which reviewed the outcome of recent testing of radioactive cesium contaminations

in samples of yumekasago.

17.5 Future Perspectives for Fukushima Fisheries

The Fukushima FCA started its trial operations in June 2012 to target species

occurring in offshore areas. It subsequently included species from the

mid-surface layer of the coastal areas outside the 20 km radius from the nuclear

power plant. The landing amount of the trial operations is around 1/30th of that

harvested by commercial fisheries before the disaster. The full recovery of com-

mercial fisheries in Fukushima has yet to be achieved. As of January 2015, the sale

and marketing of 35 marine species are prohibited (Fukushima Prefecture 2015).

These species typically live on the sea bottom of very near-shore areas. Full

recovery of Fukushima fisheries cannot be realized until the government lifts the

sales prohibition on all remaining marine species, but the timing of such a decision

remains unclear.

At the same time, there are several issues that need to be addressed. These

include issues related to weak consumer confidence following the nuclear power
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plant accident. Numerous incidents of weak consumer confidence in fisheries

products from the tsunami-affected areas have been reported in newspapers and

other media in Japan. Increased communication between producers and consumers

assist consumer confidence. In order to increase communication between producers

and consumers, it could be effective to shorten the distribution channel. Domestic

fish distribution in Japan is composed of multiple layers of traders with two stages

of wholesale markets: at the landing site and the consumption site. The first landing

site handles the harvested fish and includes middlemen and distributors, while the

consumption site wholesale market (e.g., Tsukiji Market in Tokyo) is located in

cities and includes wholesalers and brokers. Retailers are then added to the value

chain. Information about the production site is hard to communicate to consumers

across this long chain. Improved communication and the establishment of accurate

traceability mechanisms in the value chains can play a role in reducing consumer

concerns (Yagi 2013).

Reforming the value chains for fishery products can help to reverse the current

weak position of producers in the value chain compared with retailers (Sakai

et al. 2012; Nakajima et al. 2011, 2014), and it can provide a solution to the

economic weakness of Japan’s fish harvesting sectors as a whole that pre-dates

the March 2011 disaster. Even before the tsunami, the Ministry of Agriculture,

Forestry and Fisheries pointed out that, while producers receive 24.7 % of the retail

price of the fish, retailers receive 38.5 % and middlemen/distributers receive the

remaining share (36.8 %) (Fisheries Agency of Japan 2009). It is extremely difficult

to raise the price of fishery products in retail markets in the midst of weak consumer

confidence. To enlarge the share of producers in the value chain, one possible

option could take the form of new e-commerce business mechanisms to sell

products more efficiently to urban consumers; any other forms of direct marketing

to consumers would also be useful.
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Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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Chapter 18

Consumer Evaluation of Foods from
the Disaster Affected Area: Change
in 3 Years

Hiromi Hosono, Yuko Kumagai, Mami Iwabuchi, and Tsutomu Sekizaki

Abstract Since the Great East-Japan Earthquake and the following nuclear power

plant accident, consumer anxiety on food and environmental contamination of

radioactive substances have spread widely. This chapter examines the change in

consumer attitude towards foods, focusing on beef, produced in disaster affected

area based on the 6 times of web-based survey from 2011 October to 2014 March.

The results showed that the risk of radioactive substances through beef consump-

tion are not regarded as high as microbial hazards. And trust on radiation risk

management implemented by government as well as food business were recover-

ing. However, the ratio of those who stated zeroWTP for foods produced in disaster

affected area were rather increasing or remain constant since 2012. The results of

choice experiment indicated providing information of radiation risk and risk man-

agement is effective to recover WTP for beef produced in Fukushima while

knowledge level remained relatively low. We believe that continuous and accessi-

ble communication with consumers would contribute to the recovery of

devastated area.

Keywords Consumer behavior • Risk perception • Trust • Knowledge •

Information

18.1 Introduction

More than 3 years have passed since the Great East Japan Earthquake and TEPCO’s

first Fukushima Daiichi Nuclear Power Plant explosion that led to catastrophic

damage to East Japan. The disaster caused huge damage to the social life of the

Japanese, especially in eastern Japan. Immediately after the accident, consumers

were concerned about radioactive substances polluting the environment and food. A
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considerable number of people were forced to reside in areas some distance from

the affected area, and people started to pay more attention to the origin of their food

to avert health risks.

The Japanese Ministry of Health, Labour and Welfare (MHLW) adopted a

provisional regulation for the level of radioactive substances in foods on March

17, 2011. In April 2011, this regulation was revised upward and a maximum

permissible dose of radioactive substances was set for each food category. The

acceptable value for radioactive cesium in general food products was designated to

be 100 Bq/kg or less. Along with setting standards, intensive inspection of atmo-

sphere, soil, and agricultural products was initiated to assess the contamination

situation and to plan and implement decontamination activities as well as to restrain

the shipping of foods contaminated with excess levels of radioactive substances.

With these compositive activities, most foods that were inspected were below the

regulation level of radiocesium contamination, except for wild animal or vegetables

and marine products.

However, consumer anxiety about foods produced in the disaster-affected area is

not expected to disappear in the short term. According to the annual consumer

research implemented by the Food Safety Commission in August 2013, 29.5 and

38.0 % of responders felt very uneasy and uneasy, respectively, about the risk of

radioactive substances in foods. The ratio of feeling uneasy ranked the second

highest after microbial contamination (20.7 and 60.1 %) among 12 food-related

hazards, but when the focus was on those who felt very uneasy, radioactive sub-

stances ranked the highest. Compared with the survey in 2011 and 2012, the ratio of

those who felt very uneasy and uneasy about food contamination with radioactive

substances was decreasing; 88.5, 80.3, and 74.2 % in August 2011, March 2012,

and September 2012, respectively, although considerable numbers of people were

still anxious about the risk.

Other consumer research also indicated that there was broad consumer anxiety

about radiation risk (Kito 2012; Hangui 2013; Kurihara et al. 2013). Ujiie (2012,

2013) conducted research every 3 months about consumer acceptance of foods

produced in Fukushima and Ibaraki prefectures between March 2011 and February

2013. The price differences in produce between these two sites and another area

have been regarded as a willingness to accept (WTA) the situation. In Ujiie’s

analysis, WTA’s were separated into “health risk estimation due to radioactive

contamination” and “effect of production at the site.” As a result, WTA increased in

August 2011, which may have been due to a high dose of radiocesium detected in

beef. Yoshida (2013) conducted two consumer surveys (January and December

2012) and warned of the possibility of a regime shift regarding foods from the

disaster-affected area; the shift can occur in people experiencing catastrophic shock

beyond resilience. Research by other consumers also noted the high anxiety, high-

risk perception, and difficulty of recovering consumer confidence.

In this article, we describe the change in Japanese consumer attitudes, knowl-

edge, risk perception, and food-purchasing behavior based on a series of web-based

consumer surveys implemented from 2011 to 2014.
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18.2 Research Outline

We conducted consecutive web-based consumer surveys from October to

November 2011 (N¼ 4363), March 2012 (N¼ 5028), January 2013 (N¼ 6357),

and February 2014 (N¼ 9678) to investigate consumer attitudes and knowledge on

radioactive substances, risk perception, and risk management measures taken in

Japan with a focus on beef. The first two surveys were monitored by Nikkei

Research Inc. and the others were monitored by Nippon Research Center, Ltd.

The respondents included both males and females recruited from all prefectures

aged in their 20s–60s. After the 3rd and the 5th (last) surveys shown above, a

web-based donating experiment was offered to the 1881 (4th) and 1822 (6th)

participants, respectively, selected from the 3rd and 5th survey responses. In this

experiment, the participants received 100–10,000 JPY as the result of the Ultima-

tum Game. Using this money, they were then asked whether to donate or not. Ten

charity organizations were provided as options, including enhancement of food

radiocesium monitoring, compensation for farmers, subsidization for recovery from

the tsunami-affected area, research on radiation risk, and development of new

energy resources.

The 1st to 3rd and 5th surveys covered the following subjects: (1) perceived risk

level of eight (or seven) beef-related hazards; (2) knowledge about food safety risks

and risk management focusing on radiocesium; (3) attitude toward food safety and

radiation risk management; (4) intention to support rehabilitation and reconstruc-

tion from the disaster; (5) intention to purchase food produced in East Japan and

Fukushima prefecture; and (6) demographic characteristics such as age, gender,

residential area, and household members. We also implemented the beef choice

experiment on the 3rd and 5th survey and risk management measure choice

experiment on the 4th and 6th survey. Before the beef choice experiment, some

respondents were provided with information about radiation risk and the risk

management measures conducted after the disaster. The information included risk

of radioactive cesium from foods, standards and risk reduction measures taken in

Japan, and the results of food radiation inspections. The demographic characteris-

tics of the respondents are shown in Table 18.1. In the following section, we mainly

focus on the 3rd and 5th surveys and the subsequent donating experiment.

18.3 Results

18.3.1 Risk Perception

Eight hazards were itemized regarding assumed degrees of health risk originating in

beef: enterohemorrhagic Escherichia coli, Salmonella sp., Campylobacter spp.,

antibiotic residues, radioactive substances, bovine spongiform encephalopathy,

allergies, and cloned beef. Respondents were asked to rate them on a scale from

18 Consumer Evaluation of Foods from the Disaster Affected Area: Change in 3 Years 231
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no risk (0) to very high risk (5). Considering cases having no idea about hazards or

no ability to assume risk, the option of “have no idea” was included. Average

perceived risk levels by gender for the 3rd and 5th surveys are shown in Fig. 18.1.

Compared to the 3rd survey, the 5th survey showed a general tendency for higher

risk perception. Women were more apt to assume higher risk in all hazards than

men. For individual hazards, enterohemorrhagic E. coliwas ranked highest in every

survey and for both genders. Approximately 25 % of respondents chose “Don’t

know” to each hazard, with around 40 % in the case of Campylobacter.

Radiocesium was ranked 3rd highest among women while 5th highest among men.

To investigate the perceived risk level of Japanese beef compared to imported

beef, in the 6th survey we asked the risk level of three hazards from eating beef

distributed in US, France, and China: enterohemorrhagic E. coli, bovine

spongiform encephalopathy, and radiocesium. Half of the respondents were asked

to answer the Japanese beef risk level at first and the others were asked Japanese

beef risk level at the end while the other country of origin was randomly presented.

Figure 18.2 shows the results from these questions. The perceived risk level of

acquiring enterohemorrhagic E. coli or bovine spongiform encephalopathy by

eating Japanese beef were lower than the other countries, whereas radiocesium

was similar to USA and France and lower compared to Chinese beef. In the cases

where Japanese beef was presented at the end, the perceived risk level was lower

than when it was presented first.
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Fig. 18.1 Risk perception and the rate of choosing the “don’t know” option. Left axis shows the

average of responses from no risk (0) to high risk (5) and right axis shows the percentage of

responses choosing “don’t know” option
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18.3.2 Attitude and Willingness to Pay for Foods from

the Disaster-Affected Area

Attitudes toward foods produced around the disaster-affected area were asked in the

2nd, 3rd, and 5th surveys. We provided several statements and the respondents were

asked to answer to what extent they agreed with the statements; 4 and 6 Likert-

scales were used in the 3rd and 5th surveys, respectively. The ratios of those who

agreed to each statement are shown in Fig. 18.3. The results showed that approx-

imately half of the respondents somewhat agreed to the purchase of foods away

from the devastated area after the nuclear power plant explosion. Approximately

45 % of respondents thought agricultural produce from Fukushima should not be

used for a school lunch. These ratios slightly increased over the last 3 years. In

contrast, approximately 50 % were willing to purchase food from the Kanto/

Tohoku region as well as Fukushima prefecture to support the recovery and the

ratio was increasing. Approximately 75 % of responders considered that they can

contribute to the recovery by purchasing food from the devastated area.

Willingness to pay for foods produced around the radiation-affected area is

shown in Fig. 18.4. Respondents were asked to choose the highest price they

would pay for an item of food if radiocesium was not detected or was below the

regulation level from 0 % (do not want to buy) to 200 % (twice as much as normal

prices) in 10 % increments. In all surveys, approximately 70 % of the responders

did not want to pay the normal price if radiocesium was below the regulation level.

In addition, the ratio of those who did not want to buy (0 %) increased between the

2nd and 3rd surveys from around 10 to over 20 %. Similarly, even if radiocesium

was undetected in the produce, around 15 % of responders answered that they did

not want to buy it in the 3rd and 5th survey, which was an increase of more than 5 %

from the 1st and 2nd surveys. Therefore, although the radiocesium regulation levels

in general foods was strengthened in April 2012 from 500 to 100 Bq/kg, the survey

results indicate that this revision did not increase consumer confidence about the

safety of foods produced around the devastated area.
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Fig. 18.2 Comparative risk perception of beef distributed in Japan, USA, France, and China. This

figure shows the average of responses from no risk (0) to high risk (5)
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Fig. 18.3 The ratio of those who agree to each statement
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Fig. 18.4 WTP for foods produced in the disaster affected area. Radiocesium at below the

regulation level (upper results) and not detected (lower results)
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18.3.3 Trust About Risk Management of Radioactive

Substances in Foods

Consumer trust about the efforts made by stakeholders to manage radiation risk in

foods was queried in the 2nd, 3rd, and 5th surveys (Fig. 18.5). The choices ranged

from (strongly) agree to (strongly) disagree using the 4 or 6 Likert-scale, which is

similar to that used for the attitude questions. In the 2nd survey, slightly less than

20 % of the respondents agreed to the questions “The central government provides

necessary information for citizens enabling them to judge the safety of food

regarding radioactive substances” and “I can trust on the radiation risk management

taken by the central government.” The affirmative answer to trust about risk

management measures taken by local government, food companies, and retailers

ranked higher than risk management measures taken by the central government in

the 2nd survey. The percentage of “agree” and “somewhat agree” regarding trust

about radiation risk management of central or local government as well as other

stakeholders in the food chain increased in the 3rd and 5th surveys. However, the

results showed that more than half of the respondents “(somewhat) disagree” about

the trustworthiness of radiation risk management in foods 3 years after the incident.

Approximately 50 % of respondents answered “agree” to the question “In order to

improve safety, the stricter the standard value of radioactive substances in food, the

better” in the 2nd and 3rd survey and the percentage increased to over 60 % in the

5th survey. This indicates a greater consumer desire for stricter regulations about

radioactive substances in foods as time passes.
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18.3.4 Knowledge About Radiation Risks and Risk

Management Measures

To investigate the knowledge level of the respondents, we showed several correct/

incorrect descriptions about radiation risk and risk management measures. Respon-

dents were asked to answer if the description is “true,” “not true,” or “I don’t

know”. The presented descriptions were not the same between the surveys due to

the changing conditions and provided information. Table 18.2 shows the correct

answer rate before information was provided. The result showed that approximately

40 % of respondents understood the meaning of Becquerel and Sievert. Those who

knew the difference between biological half-life and physical half-life of

radiocesium was approximately 30 % in the 2nd and 3rd survey, while it was

12.3 % in the 5th survey. Natural exposure dosage in Japan and repair function of

genes were queried in the 2nd and 3rd surveys and approximately 25 % of people

were aware of them. Knowledge of the permissible dose from foods (1 mSv),

standard value of radiocesium in general foods (100 Bq/kg) and current

radiocesium exposure levels in Fukushima were lower, less than 20 % in the 5th

survey.

18.3.5 Satisfaction Levels for Radioactive Substance

Management in Food

We asked about satisfaction with radioactive substance management in food by the

government in the 3rd and 5th surveys. Satisfaction levels by gender and age group

are shown in Fig. 18.6. The percentage of respondents who answered “not satisfied”

was 19.3 and 29.3 % in the 3rd and 5th surveys respectively, with a tendency to

increase with age. Although trust levels increased as time passed, satisfaction

Table 18.2 The correct answer rate for the questionnaire about radiation risk and risk manage-

ment measures

2nd (%) 3rd (%) 5th (%)

Meaning of Becquerel and Sievert 35.9 41.0 37.1

Biological half life of radiocesium 29.2 33.5 12.3

Health effect of low dose exposure 14.7 14.5 22.3

Permissible dose level 15.2 14.5 11.7

Natural exposure dose in pease time 27.6 26.7

Repair function of gene 27.7 23.8

Once shipment ban applied, it take 1 month before reshipping 11.0 11.8

Standard value of radiocesium 7.8 12.8

Current radiocesium exposure level in Fukushima 18.9

Inspection result of beef 19.3
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decreased. Only a few percentage of respondents answered “satisfied.” The younger

respondents were more likely to respond “have never thought about it.”

The relationship between satisfaction levels for radioactive substance manage-

ment in food and WTP for food from disaster-affected areas is shown in Fig. 18.7.

In the 3rd survey, as satisfaction levels rose, willingness to pay for foods from the

devastated area increased. The gap between “below regulation level” and “not

detected” became smaller as the satisfaction level increased. However, the average

WTP among those satisfied with the management was not highest in the 5th survey.

The relationship between knowledge and risk perception was inexplicable in the 5th

survey (Fig. 18.8). Higher knowledge and lower risk perception related to satisfac-

tion in the 3rd survey; however, the correct answer rate of “satisfied” people was

higher, but perceived risk level was not lowest in the 5th survey. Further research to

investigate the constituent of satisfaction is expected.

18.3.6 Results of the Beef Choice Experiment

Table 18.3 shows the estimated parameters applied to the multinomial logit model

of a beef choice experiment. Before the experiment, we provided a 3-min movie
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explaining the risk and risk management of radioactive substances in foods. How-

ever, 33.4 % of those who were supposed to be provided with information stopped

watching without waiting for the end. Therefore, only approximately 30 % of

respondents were provided with information. The attributes for beef were origin

of beef (four domestic sites in Japan, USA and Australia), price (from 78 JPY to

468 JPY per 100 g) and inspection results of radioactive substances. Inspection

results were shown in “Becquerel/kg in number” (less than 10 Bq/kg, less than

25 Bq/kg, less than 50 Bq/kg or less than 100 Bq/kg) or “Words” at a similar level

as a number (not detected, less than 1/4 of regulation level, less than 1/2 of

regulation level or below regulation level). Respondents were asked to answer

nine times for choice experiments for which the same alternatives were presented

in the 4th or 5th choice and 9th choice. Only those who chose the same alternative
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Fig. 18.7 Relationship between satisfaction level and WTP for foods from the devastated area
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in these two choice cases were applied to the analysis. Moreover, those who

answered “Don’t know” to some questions were excluded from the analysis.

Therefore, a total of 29,832 samples were utilized for this analysis. Table 18.3

shows the estimated parameters used in the multinomial logit model.

Both models 1 and 2 show negative signs toward the production site

“Fukushima” while the parameters for radiation contamination levels were not

significant. This indicates the possibility that consumers focus more on the produc-

tion site rather than on the result of a radiation inspection. Information was effective

at increasing acceptance of beef produced in Fukushima. Also, the knowledge

improved WTP for Fukushima beef. Perceived risk level also affected acceptance

of Fukushima beef and those who answered “I can’t judge the risk level” negatively

evaluated Fukushima beef. In the previous descriptive analysis the relationship

between WTP and satisfaction level were ambiguous; however, the estimated

parameter of this choice experiment indicated recovered price evaluation from

Fukushima labeling among those who satisfied with radiation risk management.

18.3.7 Donating Behaviors for Devastated Area and Food

Safety Risk Management

Web-based donation experiments were implemented in the 4th (N¼ 1881) and 6th

(N¼ 1822) surveys. Participants were selected from the 3rd and 5th surveys,

Table 18.3 The estimated parameters applied to the multinominal logit model

Model 1 Model 2

Coefficients P value Coefficients P value

attribute Constant : Domestic 0.253*** 0.00 0.280*** 0.00

Constant : Import 0.280*** 0.00 0.253*** 0.00

Price �0.005 0.47 �0.005 0.46

Production site : Hokkaido 0.032 0.22 0.032 0.22

Production site : Fukushima �0.029 0.13 �0.081* 0.10

Production site : Kagoshima �0.001 0.98 0.000 0.99

Production site : US �0.029 0.28 �0.028 0.29

Contamination level: in Bq/kg 0.002 0.94 0.003 0.94

Contamination level: in words 0.028 0.38 0.028 0.37

Cross

term

Fukushima* Complete info. 0.102* 0.06 0.095* 0.08

Fukushima* previous

knowledge

0.218** 0.02

Fukushima* risk perception �0.061*** 0.00

Fukushima* risk can’t judge �0.173** 0.02

Fukushima* satisfaction level 0.096*** 0.00

No. of observation 29,832 29,832

AIC/N 2.762 2.761

* (p<0.1), ** (p<0.05), *** (P<0.01)
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respectively, considering the age group, sex, residential area, and WTP. Before

participating in this game, they were asked how much they would be willing to

donate if they acquired 10,000 JPY in the 6th survey, which was not asked in the 4th

survey. After confirming their intention to participate in the experiment, partici-

pants received 300–1300 JPY as a result of a two-player Ultimatum Game. Next,

we asked their intention to draw a lottery or not using the money they received in

the Ultimatum Game. If they participated in the lottery, they would get 100–10,000

JPY and if they refused to participate, they would get the money they had acquired

at that stage. The average amount of money acquired at this stage was 821.0 JPY in

the 4th and 628.3 JPY in the 6th survey.

Many contributions were collected after the Great East Japan Earthquake to

support affected people and recovery activities. In our research, we presented

10 activities and asked each participant to donate as much as they wanted using

the money they received from the above experiment. Their donating behavior is

shown in Tables 18.4 and 18.5. Women donated more than men, and the donation

rate increased in the older groups. Overall donation rates increased in the 6th survey

(54.4 %) compared to the 4th survey (46.5 %). The greatest amount, approximately

Table 18.4 Donated rate by

sex and age group
Donation rate

4th 6th

Actual (%) Projected (%)

Male 47.1 55.5 58.8

Female 52.0 58.0 62.4

20s 31.7 43.7 50.5

30s 43.0 49.9 55.8

40s 53.3 58.8 60.2

50s 57.0 63.2 65.5

60s 63.7 68.4 71.3

Table 18.5 Donated rate by activities

Activities 4th (%) 6th (%)

Recovery of Tsunami affected area 15.1 15.4

Health monitoring for radiation exposed children 5.4 7.8

Compensation for farmers in Fukushima 5.1 4.7

Research on development of new energy 4.8 6.4

Research on decontamination of radioactive substances 4.3 5.4

Research on health effect of radiation exposure 4.3 5.7

Compensation for farmers outside Fukushima 2.2 3.0

Radiation monitoring of marine products 1.9 2.1

Radiation monitoring of animal products 1.8 2.4

Other food radiation monitoring 1.7 1.8

Total donation 46.5 54.4

Respondents received 53.5 45.6
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30 % of all donations, was contributed to the recovery of tsunami-affected areas,

followed by health monitoring of children from radiation exposure. In the 6th

survey, more participants contributed to research such as recyclable energy, health

effects of low dose exposure, and decontamination of radioactive substances. The

difference in the donated amount between compensation for farmers in Fukushima

and outside Fukushima decreased. Total donations for intensification of food

monitoring was 5.4 % (4th) and 6.2 % (6th), which were the 2nd and 4th largest

donations, respectively.

18.3.8 Consumer Requirement for Food Safety Measures

In the 6th survey, we asked the respondents to select and rank food safety measures

that they considered important. We displayed 18 options randomly ordered to avoid

the ordering effect; options shown at the top were usually selected more often. As a

result, communicating risk with consumers about radiation risk and food poisoning

were highly prioritized, whereas communicating risk about bovine spongiform

encephalopathy with consumers was not highly ranked (Table 18.6). Following

Table 18.6 Consumer demand for food safety measures

1st

(%)

2nd

(%)

3rd

(%)

4th

(%)

5th

(%)

Risk communication for consumers (radioactive

substances)

18.1 7.5 6.0 4.0 5.1

Risk communication for consumers (food

poisoning)

9.8 14.5 4.7 4.5 5.7

Decontamination of soil 9.8 5.5 4.9 7.7 7.1

Risk communication for food industry (food

hygiene)

8.7 7.8 10.6 4.9 5.1

Enhance radio Cs inspection (animal products) 7.8 9.3 9.1 9.3 7.8

Implement BSE blanket inspection 6.5 4.7 6.8 7.9 6.1

Enhance radio Cs inspection (marine products) 6.4 11.7 9.8 8.9 5.5

Research on health effect of low dose radiation

exposure

4.7 3.9 3.7 3.1 7.4

Enhance restaurant hygiene monitoring 4.2 3.7 4.3 3.4 5.4

Develop BSE vaccine 4.2 2.5 2.8 2.6 4.5

Hygiene control in food distribution 3.9 6.5 7.1 6.9 7.2

Research on hestimating radiation exposure from

food intake

3.3 3.5 2.4 3.9 5.2

Hygiene control in restaurants 2.8 4.2 3.3 5.3 5.4

Enhance radio Cs monitoring (plants) 2.3 3.9 9.8 8.3 6.3

Develop technology for edible raw beef 2.2 1.9 2.7 3.7 4.0

Risk communication for consumers (BSE) 2.1 3.3 4.7 7.2 3.5

Enhance slaughterhouse hygiene 1.8 3.2 4.1 5.4 4.2

Enhance farm hygiene 1.4 2.1 3.1 3.1 4.6
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these options, consumers thought that radiocesium inspection in food, especially

animal and marine products should be enhanced.

18.4 Discussion and Conclusions

Serious efforts to reconstruct the devastated area have been undertaken since the

earthquake on March 11, 2011. Regarding the radiation contamination of foods,

almost all marketed foods have been shown to be below the detection limit except

for some seafood, fungi, wild vegetables, and wild animals. This series of surveys

indicates that consumers’ perceived risk level of radioactive substances in foods is

not high compared with the microbial risks. Moreover, risk from radiocesium food

contamination in Japan was considered to be at a similar level to that in USA and

France and lower than foods distributed in China. Meanwhile, risk of bovine

spongiform encephalopathy and E. coli O157 in Japan were regarded as the lowest

among the four countries. However, we could argue that consumer anxiety is not

reduced if we consider the results of consumer awareness and WTP for food from

the disaster-affected area.

Trust about risk management taken by stakeholders, including the government

and food industry, was shown to be recovering. It seems contradictory, but con-

sumer satisfaction did not recover like trust. Moreover, there was a correlative

relationship between satisfaction level and lower risk perception as well as higher

WTP for foods from the disaster-affected area in the 3rd survey; although the

relationship weakened in the 5th survey. Perceived radiation risk from foods was

not ranked lowest and WTP was not ranked highest among those who revealed

highest satisfaction levels. Albeit further research is needed to clarify this point, one

explanation is that they are satisfied with being able to choose foods that originate

away from the disaster affected area by checking the production site on the label.

This is partially indicated by that most people do not know about the standard value

of radiocesium and/or the permissible level of exposure from foods as well as

current exposure level in Fukushima. A similar result also was obtained from the

beef choice experiment, where the estimated coefficient of production area as

“Fukushima” was negative but the radiation contamination level (results of inspec-

tion) was not significant.

Consumers are carrying an additional burden of collecting information to under-

stand the effects of radioactive substances on health. It is easier to feel secure by

choosing foods that originate away from the disaster site rather than trying to

understand risk management for radiocesium contamination and the current con-

tamination situation. Therefore, it makes sense for consumers to avoid risk by

selecting food from areas as far away from the incident site as possible.

Consumer requests for communication about radiation risk are strong as indi-

cated in the 6th survey. To reduce the cost of collecting and processing public

information, communication content and methods should be developed by involv-

ing various entities, including the food industry, experts, and consumer
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organizations. The media such as TV, newspapers, and magazines play a major role

by providing information to citizens. However, less information about the situation

in the devastated area is reported in the media as time passes. When radiocesium

inspection results indicate values in excess of the standard value, then it is usually

reported in the media, whereas a normal situation is usually not reported.

We might wait for consumers to forget about the hazard or risk, but it might take

longer time. In addition, because consumer knowledge on risk and risk manage-

ment measures are limited and focus more on production site rather than inspection

result, it has the potential to lead consumers to regard a particular region as

dangerous in the long term (Fig. 18.9), or indicates a possibility to occur regime

shift as Yoshida has mentioned.

We consider that it is preferable for Japanese consumers to feel secure in the

long term by acquiring knowledge about radiation risk, even it requires effort.

Otherwise, they will be faced with some anxiety with every food purchase or they

will be unable to enjoy the food culture or special local products produced in the

affected area. Moreover, reconstruction of agricultural production in Tohoku area,

which is an important food supply base for the metropolitan area, is crucial when

considering the future stability of Japan’s food supply. Consumer support is a vital

element for promoting the reconstruction. The food risk we are facing is not only

caused by radioactive substances. In order to enjoy a healthy diet and a healthy life,

we should consider other food safety risks, such as the availability of food (food

security), ecosystem sustainability, natural resources, and local infrastructure.

Fig. 18.9 Vicious circle on food market in devastated area
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Chapter 19

Imaging Techniques for Radiocesium in Soil
and Plants

Ryohei Sugita, Atsushi Hirose, Natsuko I. Kobayashi, Keitaro Tanoi,
and Tomoko M. Nakanishi

Abstract Various radioisotope imaging techniques have been used at the Graduate

School of Agricultural and Life Sciences, University of Tokyo, to analyze samples

containing radiocesium (137Cs and 134Cs). There are two types of samples: (1) envi-

ronmental samples contaminated by the fallout from the Fukushima Daiichi nuclear

power plant accident, which contain relatively low concentrations of radiocesium and

(2) laboratory samples from tracer experiments conducted at the radioisotope institu-

tion containing relatively high concentrations of 137Cs. The first technique used to

visualize radiocesium in soil and plants was radioluminography (RLG). RLG, which

makes use of an imaging plate, has a dynamic range that is large enough to detect both

environmental and tracer-added samples. To quantify radiocesium distributions, the

samples were frozen and sliced before contact with the imaging plate. This freezing

procedure after sampling is for preventing radiocesium movement during slicing and

measurement of 137Cs distribution. After slicing, two detection methods were

employed: RLG and microautoradiography (MAR). MAR is the conventional and

older method for imaging radioisotopes based on the daguerreotype process. We

applied this method to frozen sections and obtained 137Cs distributions at a higher

resolution than with RLG. Following this, we employed a non-destructive method for

imaging 137Cs movement in a living plant. We developed the visualization technique

called real-time radioisotope imaging system and then demonstrated 137Cs movement

from soil to rice plants using a chamber containing paddy soil, water, and rice plants.

Lastly, 42K obtained by 42Ar–42K generation enabled a comparison between the

movement of 137Cs and 42K. The mechanism of Cs transport has been reported to

have some relationship with the K transport system, so experiments using both 137Cs

and 42K would be useful for clarifying the mechanism in more detail.

Keywords Fukushima Daiichi nuclear power plant accident • Imaging plate • Live

imaging • Microautoradiography • Radiocesium • Radioisotope imaging •

Radioluminography • Real-time radioisotope imaging • Soil • Whole-plant

imaging • 137Cs distribution
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19.1 Radioluminography

19.1.1 Radioluminography Using an Imaging Plate

Radioluminography (RLG) is a type of autoradiography (ARG) based on stimulated

luminescence and is widely used to visualize radiation from samples. Before the

RLG technique was established, ARG using X-ray film was employed for visual-

ization, despite its difficulties in handling, low quantitativity, and low sensitivity.

We used the imaging plate (IP) (Fuji Film) as a stimulable phosphor plate because it

has the advantage of a wide dynamic range of determination, re-usability, and high

sensitivity.

There are many techniques available for detecting 137Cs in samples and for

measuring gamma ray emissions. For example, the germanium semiconductor

detector and sodium iodide scintillation counter are often used for general deter-

minations. These techniques are more suitable for 137Cs determination compared to

ARG because ARG mainly detects the beta rays of 137Cs, which are easily self-

absorbed in thick samples Nevertheless, ARG using an IP (i.e., RLG) has been a

useful technique for observing 137Cs distribution in thin samples from fields in

Fukushima or in samples from the radioisotope laboratory. RLG has been used to

quantify 137Cs and other nuclides in plant samples (Kanno et al. 2007; Sugita

et al. 2014).

A sample is placed in contact with the IP for a period of time that is dependent on

the radiation level in the sample. During sample exposure to the IP, radiation

photostimulates the fluorescent material attached to the IP and a radiation image

is recorded. The radiation image is then analyzed by a He–Ne laser-based imaging

system. The photostimulated fluorescent material releases its fluorescence as it is

scanned by the laser, and the fluorescence is sequentially detected and digitized by

the imaging system. The intensity of the fluorescence is called the photostimulated

luminescence value, which has a linear relationship with radiation intensity up to at

least five orders of magnitude. Conveniently, the afterimage on the IP can be

eliminated by white fluorescence; hence, the IP can be used repeatedly. The

sensitivity of the IP was more than 10 times higher than X-ray film, even though

the exposure time for the environmental samples was longer on the latter due to

their low radiocesium activity. To detect low radiocesium activity, we performed

the exposure inside a shield made of lead and copper at around 4 �C (Fig. 19.1). The

shield is expected to prevent exposure to background radiation and the low tem-

perature can reduce fading during the long exposure time (Suzuki et al. 1997).

Because the RLG technique is easy to handle and generic in life science

research, many samples derived from the Fukushima Daiichi nuclear power plant

accident have been examined, which include the following: leaves of Japanese

Beech (Fagus crenata) and needles of Japanese Black Pine (Pinus thunbergii)

(Koizumi et al. 2013); soil, bamboo, and mushroom (Niimura et al. 2014); branches

and leaves of Cryptomeria japonica, branches and leaves of Thujopsis dolabrata

var. hondae, branches and leaves of Prunus percica, branches and roots of Morus
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alba, lichen Permotrema tinctorum, and internodes and shoots of Phyllostachys

bambusoides (Sakamoto et al. 2013); skeletal muscle of pig (Yamaguchi

et al. 2013); green onion, carrot, and lettuce (Isobe et al. 2013); leaves of

C. japonica, fallen leaves of Quercus serrata, and fallen leaves of Pedicularis

densiflora (Tanaka et al. 2013); soil particles (Mukai et al. 2014); leaves of Sasa

palmate, Taxus cuspidate, Quercus serrate, Trifolium spp., and Equisetum arvense

(Mimura et al. 2014); leaves of cabbage and spinach (Shiba et al. 2013); leaves of

bamboo and oak, and trunks of cedar tree and pine tree (Nakajima et al. 2014);

leaves of beech, pieris, and oak (Furuta 2013); soil, plant, and dust samples (Itoh

2
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(600 mm x 400 mm x 5 mm-thick)
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(200 mm x 100 mm x 50 mm-thick)

These shaded blocks were
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Fig. 19.1 The lead shield employed for detecting the low level of radiation
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et al. 2014); filters (Zeissler et al. 2013); leaves and ears of wheat and barley (Tanoi

et al. 2011; Tanoi 2013); soil, leaves of wheat, branches, leaves and fruits of peach,

and rice plants (Nakanishi et al. 2012); bark of Rhus vernicifera DC. (Mori

et al. 2012); bamboo (Phyllostachys reticulate (Rupr.) K. Koch) (Nakanishi

et al. 2014); and branches of peach (Takata et al. 2012).

Most of the radioluminograms pointed out that direct contamination was

observed as dots on leaves as well as on soils (Fig. 19.2), these dots having been

observed as long as several years after the Fukushima Daiichi nuclear power plant

accident. On the other hand, some images, such as rice plants (Nakanishi

et al. 2012) and bamboo shoots (Nakanishi et al. 2014), showed a radiocesium

distribution indicating possible (cesium) transportation inside/within the plant.

Fig. 19.2 The example of radiocesium image of barley leaves in May 2011 by radioluminography

(RLG)
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19.1.2 Radioluminography with Frozen Sections

The RLG images mentioned in the previous paragraph indicate how the contami-

nated nuclides were distributed in a sample at a centimeter or subcentimeter

resolution (Fig. 19.3). To visualize the contamination in more details, it is necessary

The branch of the peach tree 

was sampled in June 2011.

The branch was exposed to an IP directly.

The branch was kept under frozen condi�on. And the cross 

sec�on of the branch was exposed to an IP.     

3
0

 m
m

10 mm

1

2

1

Fig. 19.3 The different procedures between general RLG ① and RLG with frozen sections ②
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Fig. 19.4 The 3D construction from the sequential frozen sections in RLG. The sample shown

here is a brown rice fed by 137Cs
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to place the sample closer to the IP; hence, flat sections are important for high

definition RLG imaging. However, the ionic form of nuclides, especially

radiocesium, can move inside the plant during sectioning, such as during fixation

and dehydration. For these reasons, we performed RLG on frozen samples to

diminish radionuclide movement. The samples were immediately frozen with

liquid nitrogen after slicing and stored at �20 �C until RLG imaging. We observed

degree of contamination in peach tree bark samples from 2011, but most of the

environmental samples were less contaminated and it was difficult to detect radi-

ation in the thin sections. In general, frozen section imaging by RLG was applied to

a laboratory experiment where we controlled the radionuclide levels in the samples.

The good correlation between radionuclide activity and photostimulated lumi-

nescence value for RLG with an IP allows the construction of three-dimensional

(3D) images using sequential sections. For example, a rice plant was supplied with
137Cs via the roots several days after flowering; the brown rice was sampled when

the rice grain was mature and subsequently embedded in resin under freezing

conditions. Also, preparation of sequential sections and exposure to an IP were

performed under freezing conditions. After contact, the IP was scanned with the

analyzer to obtain the radioluminograms and the 137Cs distribution was

reconstructed in 3D using Image J software (Fig. 19.4). The 137Cs tended to

accumulate in the embryo bud and outer bran layer.

19.2 Microautoradiography

Microautoradiography (MAR) is based on a technique that was used to take

photographs several decades ago. The distribution of radionuclides can be visual-

ized in greater detail by MAR than with RLG, although RLG has a greater

quantitative ability and sensitivity than MAR. For these reasons, MAR is only

performed to obtain finer images and for higher resolution of radionuclide

distribution.

It is necessary to freeze the sample for the MAR procedure, similarly to RLG

with frozen sections so, we have developed the MAR technique using/under frozen

conditions (Hirose et al. 2014). Using MAR, we observed/could observe the 137Cs

distribution in a rice grain at a sub-millimeter resolution (Fig. 19.5). The distribu-

tion of 137Cs was revealed at the tissue level and showed low 137Cs activity in the

plumule and radicle. These details were unclear in the images using RLG

(Fig. 19.5).

Figure 19.6 is a summary of the imaging techniques applicable to frozen

sections. A suitable technique must be chosen to achieve the scientific aim.
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19.3 Real-Time Radioisotope Imaging System

To understand the movement of solute in a plants, live imaging techniques are

especially useful in such dynamic context. It is necessary for live imaging tech-

niques to obtain data nondestructively. Radiation is a tool used to detect without

destruction. Most of the live imaging systems using radiation or radionuclides are

used in medicine, such as positron emission tomography (PET). There are several

systems used to analyze plants using PET knowledge, such as the plant tomographic

imaging system (PlanTIS) (Jahnke et al. 2009), or the positron emitting tracer

imaging system (PETIS) (Fujimaki et al. 2010). In these systems, two annihilation

RLG

MARmicroscopic image

Fig. 19.5 The 137Cs distribution in a rice grain visualized by RLG and MAR
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gamma rays, which are emitted from the positron emitting nuclide in a direction of

180�, are detected simultaneously so that the spatial distribution of the positron

nuclide can be determined. Unfortunately, the half-lives of positron emitting

nuclides tend to be too short to record the nuclides for several days, such as 11C

with a half-life of 20.39 min. Moreover, there are a lot of elements that are

important in plant nutrition or harmful in the human diet, but have no available

positron emitting isotopes.

We have developed a live imaging system to analyze plants over a long period

with conventional radionuclides, called real-time radioisotope imaging system

(RRIS) (Nakanishi et al. 2009). The RRIS can be applied to many kinds of nuclides

available on the market because beta-rays and soft X-rays can be detected and the

dynamic range of detection is about 1000 times (Sugita et al. 2014); 137Cs, a beta-

ray emitter, may be analyzed using this system.

19.3.1 How to Detect Radionuclides in the System

There are four steps to visualize the nuclide distribution in a plant sample

(Fig. 19.7): (1) radiation is emitted from the radionuclides in a plant sample;

(2) radiation is converted to photons (visible light), using a fiber optic plate with

a scintillator (FOS); (3) visible light is converted to electrons, which are multiplied

by a micro channel plate (MCP) with a GaAsP photoelectric surface; (4) electrons

are detected using a charge-coupled device (CCD) camera. The image size is now

20 cm� 10 cm, and the resolution is around a few millimeters. To record the very

Collec�ng samples with liquid nitrogen.

Prepara�on of sec�ons under frozen condi�on.

Radioluminography

(RLG)

Microautoradiography

(MAR)

Reconstruc�on of 3D image

Easy to handle,

quan�ta�vely 
high resolu�on

Fig. 19.6 Choice of the techniques to visualize the nuclides distribution of the sections
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weak visible light, darkness is necessary between the scintillator and the camera.

Thus, we used two types of plant chamber to illuminate the plant.

19.3.1.1 Type I: Shielding from Light-Emitting Diodelight

The plant was enclosed in an aluminum chamber containing light-emitting diode

(LED) light to illuminate a plant leaf (Fig. 19.8 upper; (Yamawaki et al. 2010)). The

thickness of aluminum between the plant and the FOS is 50–100 μm, which is

enough to shield the visible light, but X-rays and relatively strong beta-rays can

penetrate through the 100-μm aluminum film. The chamber is set inside the dark

box and the CCD camera records the photons released from the FOS. The Type I

system can only be applied to nuclides that emit X-rays or relatively strong beta-

rays.

19.3.1.2 Type II: Intermittent Lighting System

An intermittent lighting system is employed for the RRIS, whereby the LED light is

on when the photon counting camera is off, and vice versa (Fig. 19.8 bottom). The

FOS

protection film

CsI(Tl) scintillator

fiber optic plate

CCD camera

radiation visible light

Fig. 19.7 How to make an image by real-time radioisotope imaging system. The radiation from

the nuclides in a sample is converted to visible light by FOS containing scintillator. The

CCD-camera catches the light sequentially
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visible

light

CCD camera

(a)

visible

light

LED

light

(b)

LED

light

Fig. 19.8 Two types of chamber employed in the RRIS. (a) The chamber is covered with

aluminum to prevent the LED light to leak to the CCD camera. (b) The chamber is open and the

CCD light turns on only when the CCD camera is off

FOS

objec�ve

lends

CCD camera

visible light

Fig. 19.9 Microscope installed with the RRIS. The radiation from the nuclides in a sample was

converted to visible light by FOS and CCD camera captured the light passed through the objective

lends
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type II system is used to analyze low energy beta emitters such as 14C, 35S, and 45Ca

as well as the higher energy beta emitters. However, darkness is still necessary

during acquisition by the photon counting camera, which influences plant growth.

Therefore, a shorter acquisition time would be better during the daytime.

In addition to the two systems, in order to observe in greater detail, we have

developed a RRIS fluorescent microscopy system (Kobayashi et al. 2012) to

provide sub-millimeter resolution and to acquire images of radionuclides, as well

as fluorescence, chemiluminescence and differential interference contrast from a

single sample (Fig. 19.9).

19.3.2 Example: Real-Time Radioisotope Imaging System

for Rice in a Paddy Soil

To analyze the Cs movement around the roots (rhizosphere) in a rice plant, we

performed a 137Cs tracer experiment with paddy soil from Fukushima and rice

plants (Fig. 19.10). We set the rice plant with or without soil in a chamber and

collected sequential images every 10 min. The rice plant without soil absorbed
137Cs from the roots and transported it to the leaves within 4 h after 137Cs addition,

whereas a signal in the leaves of the rice plant with soil was detected 16 h after

adding 137Cs, indicating that Cs fixation in the soil plays an important role to reduce

Cs in the plant.

0 h 4 h 8 h 12 h 16 hwater soil

photographing range

Fig. 19.10 The 137Cs distribution in rice plants grown in a culture solution or paddy soil. The
137Cs was added in a culture solution or paddy soil. The images were captured every 10 min
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19.4 Potassium-42

Cesium and K are both monovalent cations in a solution and their movement in

animals and plants have been reported to be similar (Zhu and Smolders 2000;

Hampton et al. 2005). A tracer experiment was needed to record the ions; however,

there was no available isotope of potassium with a long half-life. Potassium-38 has

a half-life of 7.6 min, can be made by a cyclotron, and can be applied to plants

(Tanoi et al. 2005); however, it is impossible to record it for several hours.

Candidates for plant analysis are 42K (half-life is 12.4 h) and 43K (half-life is

22.6 h), which are generally made by a cyclotron (Clark et al. 1972) but not readily

available. In order to use a more convenient potassium isotope, a 42Ar–42K gener-

ator was used (Wegmann et al. 1981). Since the half-life of 42Ar is about 33 years,

the generator can provide 42K (a daughter nuclide of 42Ar) for several decades by

milking from the 42Ar–42K generator. The 42Ar–42K generator was used commer-

cially in Japan in the 1980s and now they are used for plant research. We introduce

the use of 42K for researching potassium movement in a rice plant.

19.4.1 Methods

42K was obtained from the 42Ar–42K generator using the method of Homareda

(Homareda and Matsui 1986) with minor modifications. In this generator, 42Ar,

produced by the 40Ar(t, p)42Ar reaction in a cyclotron (Wegmann et al. 1981),

decays to continuously produce 42K. A steel cathode is inserted into the generator

and (a tension of) approximately 60 V is applied to accumulate the positively

charged 42K (Fig. 19.11). The cathode was then washed with a solution to extract

the 42K+. The radioactivity of the extracted solution was measured using a liquid

scintillation counter (LSC 6100; ALOKA).

19.4.2 Examples

The movement of 42K in a rice plant was visualized using RRIS as well as in an

Arabidopsis (Aramaki et al. 2015). Two-weeks-old seedlings were placed in a RRIS

chamber with 3 ml of culture solution containing 6 kBq of 42K. The 42K signal from

the sample was recorded every 15 min for 12 h and the signals were calculated by

Image J software taking the half-life into account (Fig. 19.12). The signals coming

from both the culture solution and the rice plants were observed by the system: this

revealed that the rice plant absorbed most of the 42K in the culture solution in 3 h.

Using concurrent measurements, the movements of 42K and 137Cs were compared.
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Fig. 19.11 The 42Ar–42K generator. A charge of 60 V was applied to the cathode to attract ionized
42K. A few days after, the extracting solution was filled into the pipette in which the cathode was

placed to obtain the 42K

0 h 3 h 6 h 9 h 12 h

Fig. 19.12 42K distribution in a rice plant observed by RRIS. The images were captured every

15 min and the shown images were calculated considering the half life of 42K
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19.5 Summary

We introduced some new techniques for visualizing radionuclides including

radiocesium. There are several choices of imaging techniques. To observe the

radiocesium distribution in a thin sample, RLG with an IP would be the most

convenient technique. When it is necessary to observe the radiocesium distribution

in detail, frozen section imaging with RLG or MAR are useful for the distribution

can be observed at a resolution of tens to hundreds of micrometers. As a live

imaging system, RRIS can contribute to understanding the movement of

radiocesium in plants. With these imaging techniques, as well as with nuclides

such as 137Cs, 42K, and 22Na, we can access important information to solve the

problem of radiocesium contamination in crops, plants, and the environment.
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