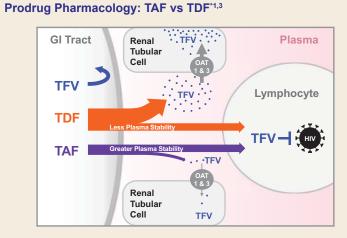
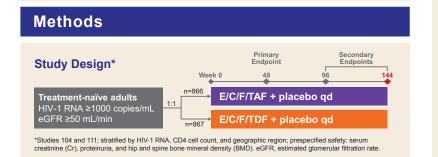
Significant Efficacy and Long Term Safety Difference with TAF-based STR in Naïve Adults

J Arribas¹, M Thompson², P Sax³, E DeJesus⁴, <u>A Clark⁵</u>, M Das⁶, A Smith⁷, S McCallister⁶

Poster **P074**


¹Hospital Universitario La Paz, Madrid, Spain; ²AIDS Research Consortium of Atlanta, Atlanta, GA; ³Brigham and Women's Hospital, Boston, MA; ⁴Orlando Immunology Center, Orlando, FL; ⁵Brighton & Sussex University Hospitals NHS Trust, Brighton, UK; ⁶Gilead Sciences, Foster City, CA; ⁷Gilead Sciences Ltd UK

🚺 GILEAD Gilead Sciences, Inc 333 Lakeside Driv Foster City, CA 94404 Tel: (650) 574-3000 Fax: (650) 578-9264


Introduction

Two randomized, controlled, double-blinded, multinational Phase 3 trials (Studies 104 [NCT01780506] and 111 [NCT01797445]) compared the NRTIs tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF), each in single-tablet regimens coformulated with elvitegravir (E)/cobicistat (C)/emtricitabine (F)

- At Weeks 48 (primary endpoint) and 96, E/C/F/TAF had noninferior efficacy (HIV-1 RNA <50 copies/mL) to E/C/F/TDF, and less impact on bone and renal safety^{1,2}
- We now present long-term (144-wk) efficacy, safety, and tolerability of treatment with E/C/F/TAF vs E/C/F/TDF in treatment-naive participants with HIV-1 from these trials

*TAF 25 mg results in 80–90% lower TFV plasma levels than TDF 300 mg. GI, gastrointestinal; OAT, organic anion transporter; TFV, tenofovir.

Results

Baseline Characteristics and Past Medical History

		E/C/F/TAF n=866	E/C/F/TDF n=867
Median age, yrs (range)		33 (18–74)	35 (18–76)
Female, %		15	15
Race and ethnicity, %	Black or African heritage	26	25
	Asian	11	10
	Hispanic or Latino	19	19
Median CD4 count, cells/µL		404	406
CD4 <50 cells/µL, %		3	3
HIV-1 RNA >100,000 copies/mL, %		23	22
Median eGFR _{cg} , mL/min		117	114
Medical history, %	Diabetes mellitus	3	5
	Hypertension	14	17
	Cardiovascular disease	1	3
	Hyperlipidemia	11	12
CG, Cockcroft-Gault.			

Virologic Outcome at Weeks 48, 96, and 144*1,2 HIV-1 RNA <50 Copies/mL

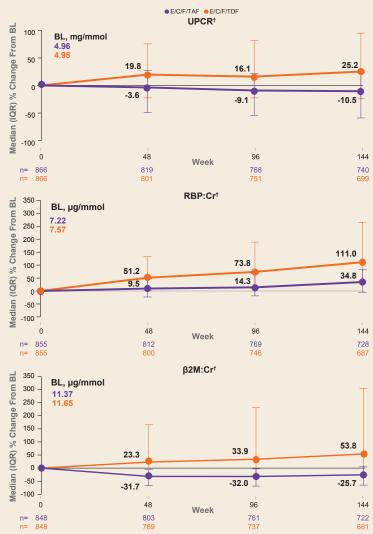
Results (Cont'd)

Renal Adverse Events Leading to Discontinuation

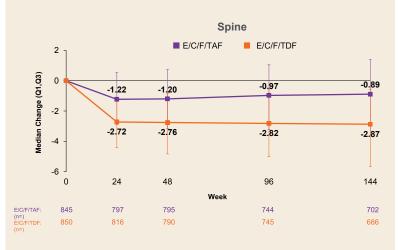
Renal AE D/C, n*	E/C/F/TAF n=866	E/C/F/TDF n=867	p-value [†]
Total	0	12	<0.001
Proximal renal tubulopathy [‡]	0	4	
Increased Cr/decreased eGFR	0	3	
Renal Failure	0	2	
Nephropathy	0	1	
Proteinureia	0	1	
Bladder spasm	0	1	

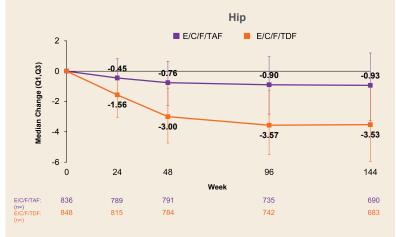
*Adverse events (AEs) coded as renal and urinary disorders (MedDRA 19.0); *Calculated using Fisher's exact test; *Renal tubular disorder, Fanconi syndrome/glycosuria.

♦ 0 case of proximal renal tubulopathy in E/C/F/TAF arm vs 4 in E/C/F/ TDF arm

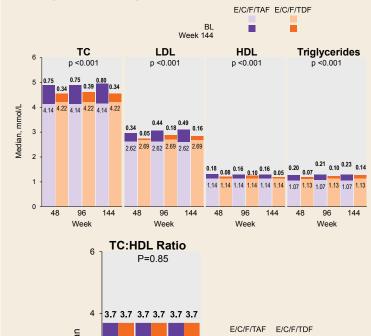

- 2 additional cases in E/C/F/TDF arm since Week 96

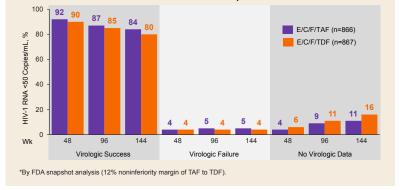
Wook 144	Safety Sum	narv*			
Week 144 Safety Summary*			E/C/F/TAF	E/C/F/TDF	p-value [†]
Participants, n (%)			n=866	n=867	
Safety	Any AE		817 (94.3)	933 (96.1)	—
	Grade 3 or 4 AE		140 (16.2)	137 (15.8)	-
	Serious AE		121 (14.0)	124 (14.3)	-
	Death		4 (0.5)†	5 (0.6) [‡]	-
Summary		Week 48	8 (0.9)	13 (1.5)	0.38
	AE-related D/C	Week 96	10 (1.2)	20 (2.3)	0.10
		Week 144	11 (1.3)	29 (3.3)	0.01
AEs in ≥10% of Partici- pants	Diarrhea		203 (23.4)	212 (24.5)	-
	Upper respiratoryt tract infection		176 (20.3)	170 (19.6)	-
	Headache		166 (19.2)	135 (15.6)	-
	Nausea		150 (17.3)	167 (19.3)	-
	Nasopharyngitis		125 (14.4)	123 (14.2)	-
	Cough		117 (13.5)	102 (14.2)	-
	Fatigue		101 (11.7)	97 (11.2)	-
	Arthralgia		104 (12.0)	82 (8.9)	-
	Back pain		104 (12.00	104 (12.0)	-
	Insomnia		94 (10.9)	68 (7.8)	-
	Syphilis		86 (9.9)	97 (11.2)	-
	Osteopenia		69 (8.0)	87 (10.0)	-


*Safety analysis set included all participants who received ≥1 dose; [†]Calculated using Fisher's exact test test to compare treatment groups; [‡]Stroke (n=2), alcohol intoxication (n=1), suicide (n=1); [§]Alcohol and drug intoxication (n=1), myocardia infarction (n=2), cardiac arrest (n=1), unknown (n=1). D/C, discontinuation.


- AEs leading to D/C in the E/C/F/TAF group primarily happened early, whereas in the E/C/F/TDF group, AEs leading to D/C continued to accumulate, with a significant difference in total number of AEs at Week 144
- Most AEs occurred within first 4 wk of treatment initiation

Renal Parameters at Week 144*


Median Change in Spine and Hip BMD through Week 144



♦ % initiating meds during study to increase BMD: TAF 16% vs. TDF 21%; p=0.018

Fasting Lipids Through Week 144*

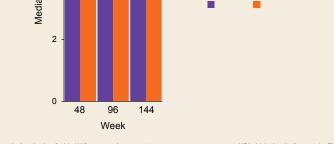
♦ At Week 144, E/C/F/TAF was superior to E/C/F/TDF in efficacy difference at both <50 copies/mL (4.2% [95% CI 0.6%, 7.8%; p=0.02]) and <20 copies/mL (5.4% [95% CI 1.5%, 9.2%; p=0.01])

Resistance

- By 144 wk, virologic failure with resistance occurred in 24 participants: 12 (1.4%) on TAF vs 12 (1.4%) on TDF
- Genotypic resistance data: NRTI and EVG resistance (n=8) and NRTI resistance only (n=4) in the TAF group; NRTI and EVG resistance (n=7), NRTI resistance only (n=4), and EVG resistance only (n=1) in the TDF group

Subgrou	Subgroups		ticipants	Difference	(95% CI)
Ŭ		E/C/F/TAF n=866	E/C/F/TDF n=867	E/C/F/TDF	E/C/F/TAF
Overall*					
Neek 48		92	90		
Week 98		87	85	H	
Week 144*		84	80		⊢∎⊣
				-24% -18% -12% -6% 0	6% 12% 18% 24
Prespecified	Subgroups at Week	144			
		85	80		
Baseline HIV-1 RNA	≤100,000 copies/mL*	(567/670)	(537/672)		┝╼╋╼┥┊
	>100,000 copies/mL	83 (162/196)	81 (157/195)	⊢ ⊢	
Baseline CD4 count	<200 cells/µL	83 (93/112)	80 (94/117)		
	≥200 cells/µL*	84	80		í
Study drug		(635/753) 72	(600/750)		
	<95%	(152/211)	(142/200) 84		
adherence	≥95%*	(577/651)	(553/661)		┝╼┲╼┥
	<50 y	83 (647/777)	80 (602/753)		
Age	≥50 y*	92	81		
	Male	(82/89) 84	(92/114) 82		T
Sex		(616/733) 85	(603/740) 72	H	
	Female*	(113/133)	(91/127)		
Race	Black	75 (168/223)	71 (152/213)	L L	-
	Nonblack*	87 (561/643)	83 (542/654)		
	US*	(301/043) 84 (447/532)	80 (423/532)		
Region	Non-US	(447/332) 84	(423/332)		

*Statistically superior. c, copies.


*p-values calculated using 2-sided Wilcoxon rank-sum test to compare treatment groups; ⁷p <0.001. BL, baseline; β 2M, β 2 microglobulin; IQR, interquartile range; RBP, retinol binding protein; UPCR, urine protein:Cr ratio

At Week 144, median change from baseline in eGFR_{CG} was significantly lower with E/C/F/TAF vs E/C/F/TDF (1.6 vs 7.7 mL/min; p<0.001)

Week 144 Grade 3 or 4 Laboratory Abnormalities

Partiipants, n (%)	E/C/F/TAF n=862*	E/C/F/TDF n=865*	
Any Grade 3 or 4 lab abnormalities [†]	284 (32.9)	266 (30.7)	
Creatine kinase elevation	99 (11.5)	87 (10.1)	
LDL elevation (fasting)	92/839 (11.0)	40/834 (4.8)	
Lipase [‡]	6/127 (5)	13/154 (8)	
Hypercholesterolemia (fasting)	34/839 (4.7)	23/835 (2.8)	
AST	29 (3.4)	32 (4.0)	
Amylase	22 (2.6)	43 (5.0)	
Hematuria (quantitative)	25 (2.9)	26 (3.0)	
Neutropenia	16 (1.9)	26 (3.0)	

*Denominator for percentage is number of participants in safety analysis set with ≥1 postbaseline lab value (for each test); 1°Ccurring in ≥3% of participants in either group; 1µpase test was only performed for participants with serum amylase >1.5 upper limit of normal. AST, aspartate aminotansferase; DLD, low-density lipoprotein. se >1.5x

*p-values calculated using 2-sided Wilcoxon rank-sum test to compare treatment groups. HDL, high-density lipoprotein; TC, total cholesterol.

 Participants on E/C/F/TAF had greater increases in TC, LDL, and HDL than those on E/C/F/TDF, with no difference in rate of initiation of lipidmodifying agents (E/C/F/TAF: 5.5% [n=48]; E/C/F/TDF: 5.8% [n=50])

Conclusions

- At Week 144, E/C/F/TAF was superior to E/C/F/TDF in virologic efficacy
 - HIV RNA <50 copies/mL: 84% vs 80%
 - HIV RNA <20 copies/mL: 81% vs 76%
- Emergence of resistance was rare
- E/C/F/TAF had significantly less impact than E/C/F/TDF on renal biomarkers
 - 0 vs 12 renal AEs; 0 vs 4 cases of proximal tubulopathy
- E/C/F/TAF had significantly less impact than E/C/F/TDF on BMD - 0 vs 6 D/C for bone loss
- These longer-term data support the use of E/C/F/TAF as a safe, well-tolerated, and durable regimen for initial and ongoing HIV-1 treatment

References

1. Sax P, et al. Lancet 2015;385:2606-15.

- 2. Wohl D et al. J Acquir Immune Defic Syndr 2016;72:58-64.
- 3. Sax P, et al. J Acquir Immune Defic Syndr 2014;67:52-8.

Acknowledgments

We extend our thanks to the participants, their families, and all participating investigators. These studies were funded by Gilead Sciences, Inc.